K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

Ta có : \(a^2+\frac{1}{9}\ge\frac{2}{3}a\)

Suy ra 

\(VT\le\Sigma\left(\frac{a}{\left(a^2+1\right)}\right)\le\Sigma\frac{a}{\frac{2}{3}a+\frac{8}{9}}=\Sigma\frac{9a}{6a+8}=\frac{9}{2}-\Sigma\frac{6}{4+3a}\le\frac{9}{2}-\frac{54}{12+3\left(a+b+c\right)}=\frac{9}{10}\)

Đẳng thức xảy ra <=> \(a=b=c=\frac{1}{3}\)

10 tháng 2 2019

Cách khác nhá.

Lời giải

Ta sẽ c/m:\(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow\frac{a}{a^2+1}-\frac{18}{25}a-\frac{3}{50}\le0\)

Thật vậy:\(VT=\frac{-\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\le0\forall x\)

Vậy \(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(VT\le\frac{18}{25}\left(a+b+c\right)+\frac{9}{50}=\frac{9}{10}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

NV
29 tháng 3 2022

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

30 tháng 3 2022

Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)

Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)

\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)

Vậy BĐT được cm 

Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

29 tháng 3 2022

Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)

Dấu "=" ⇔ a=b=c=3

NV
29 tháng 3 2022

Áp dụng BĐT Cô-si:

\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\) 

Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)

Cộng vế:

\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

1 tháng 5 2020

BĐT cần chứng minh tương đương với :

\(\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ac}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\)( luôn đúng )

nguồn  : loga 

3 tháng 6 2020

Bất đẳng thức cần chứng minh tương đương: \(\Sigma\frac{2}{a^2+b^2+2}\le\frac{3}{2}\)

\(\Leftrightarrow3-\Sigma\frac{2}{a^2+b^2+2}\ge\frac{3}{2}\Leftrightarrow\Sigma\left(1-\frac{2}{a^2+b^2+2}\right)\ge\frac{3}{2}\)

\(\Leftrightarrow\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{3}{2}\)(*)

Xét vế trái của (*), ta có: \(\Sigma\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)(Theo BĐT Bunyakovsky dạng phân thức)

Đến đây, ta cần chỉ ra rằng \(\frac{\left(\Sigma\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{2\left(a^2+b^2+c^2\right)+2\left(\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\right)}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{a^2+b^2+c^2+\Sigma\text{​​}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}{a^2+b^2+c^2+3}\ge\frac{3}{2}\)

\(\Leftrightarrow2\text{​​}\text{​​}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\left(a^2+b^2+c^2\right)+9\)\(\Leftrightarrow\text{​​}\text{​​}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(**)

Theo BĐT Cauchy-Schwarz cho 2 bộ số \(\left(a;b\right)\)và \(\left(c;b\right)\), ta có:\(\left(a^2+b^2\right)\left(c^2+b^2\right)\ge\left(ac+b^2\right)^2\) \(\Rightarrow\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge ac+b^2\)(1)

Tương tự, ta có: \(\sqrt{\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge ab+c^2\)(2); \(\sqrt{\left(c^2+a^2\right)\left(a^2+b^2\right)}\ge bc+a^2\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\text{​​}\text{​​}\Sigma\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge a^2+b^2+c^2+ab+bc+ca\)

\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca\)

\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)(Do đó (**) đúng)

Đẳng thức xảy ra khi a = b = c = 1.

13 tháng 7 2019

Mình chịu 

13 tháng 7 2019

\(1+a^2=a^2+ab+bc+ca=\left(a+b\right)\left(c+a\right)\)

Tương tự, ta có: \(1+b^2=\left(a+b\right)\left(b+c\right)\)\(;\)\(1+c^2=\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\)\(\frac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) ( do a, b, c dương ) 

\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}=\frac{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

... 

30 tháng 9 2019

Vì a,b,c là số thực dương nên \(\sqrt{a^2}=a;\sqrt{b^2}=b;\sqrt{c^2}\)=c. Vậy ta có

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)=\(\frac{a}{a+1}-1+\frac{b}{b+1}-1\)+\(\frac{c}{c+1}-1+3\) 

=3-(  \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)) =A

ta có bdt  \(9\le\left(a+1+b+1+c+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)(dễ dàng chứng mình bằng bdt cosi).

=>\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\)\(\frac{9}{3+\sqrt{3}}\)=> A\(\le3-\frac{9}{3+\sqrt{3}}=\frac{3\sqrt{3}}{3+\sqrt{3}}=\frac{3}{\sqrt{3}+1}\)

dấu = khi a=b=c=\(\frac{\sqrt{3}}{3}\)

NV
22 tháng 5 2020

\(\Leftrightarrow\frac{9}{4a^2+b^2+c^2}+\frac{9}{a^2+4b^2+c^2}+\frac{9}{a^2+b^2+4c^2}\le\frac{9}{2}\)

Thật vậy, ta có:

\(\frac{9}{4a^2+b^2+c^2}=\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)

Tương tự: \(\frac{9}{a^2+4b^2+c^2}\le\frac{a^2}{a^2+b^2}+\frac{b^2}{2b^2}+\frac{c^2}{b^2+c^2}\) ; \(\frac{9}{a^2+b^2+4c^2}\le\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{2c^2}\)

Cộng vế với vế:

\(VT\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+c^2}+\frac{c^2}{a^2+c^2}=\frac{3}{2}+3=\frac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

1 tháng 2 2019

\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)

1 tháng 2 2019

Bạn Hoàng sai rồi nhé: 

cho \(a=\frac{3}{2};b=2;c=\frac{1}{3}\) (t/m đk abc=1)

Suy ra \(a+b+c=\frac{3}{2}+2+\frac{1}{3}=3,8\left(3\right)>3\) nhé