Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1\)
BĐT cần chứng minh tương đương với \(\frac{\frac{1}{c^3}}{\frac{1}{a^2}+\frac{1}{b^2}}+\frac{\frac{1}{b^3}}{\frac{1}{a^2}+\frac{1}{c^2}}+\frac{\frac{1}{a^3}}{\frac{1}{b^2}+\frac{1}{c^2}}\geq \frac{\sqrt{3}}{2}\)
Đặt \((\frac{1}{a},\frac{1}{b},\frac{1}{c})=(x,y,z)\). Bài toán trở thành:
Cho \(x,y,z>0|x^2+y^2+z^2\geq 1\). CMR \(P=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\geq \frac{\sqrt{3}}{2}\)
Lời giải:
Áp dụng BĐT Cauchy -Schwarz:
\(P=\frac{x^4}{xy^2+xz^2}+\frac{y^4}{yz^2+yx^2}+\frac{z^4}{zx^2+zy^2}\geq \frac{(x^2+y^2+^2)^2}{x^2(y+z)+y^2(x+z)+z^2(x+y)}\) (1)
Không mất tính tổng quát, giả sử \(x\geq y\geq z\Rightarrow x^2\geq y^2\geq z^2\)
Và \(y+z\leq z+x\leq x+y\). Khi đó, áp dụng BĐT Chebyshev:
\(3[x^2(y+z)+y^2(x+z)+z^2(x+y)]\leq (x^2+y^2+z^2)(y+z+x+z+x+y)\)
\(\Leftrightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)(x+y+z)}{3}\)
Theo hệ quả của BĐT Am-Gm thì: \((x+y+z)^2\leq 3(x^2+y^2+z^2)\Rightarrow x+y+z\leq \sqrt{3(x^2+y^2+z^2)}\)
\(\Rightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}{3}\) (2)
Từ (1),(2) suy ra \(P\geq \frac{3(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{3(x^2+y^2+z^2)}}{2}\geq \frac{\sqrt{3}}{2}\)
Ta có đpcm
Dáu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow a=b=c=\sqrt{3}\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)
Khi đó giả thiết được viết lại là \(x^2+y^2+z^2\ge1\)và ta cần chứng minh \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{\sqrt{3}}{2}\)(*)
Áp dụng BĐT Bunhiacopxki dạng phân thức, ta được:
\(VT_{\left(^∗\right)}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(z^2+x^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\)
Đến đây ta đi chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\ge\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\)\(\ge\sqrt{3}\left[x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)\right]\)
Ta có: \(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\)\(\le\frac{1}{\sqrt{2}}\sqrt{\left(\frac{2x^2+y^2+z^2+y^2+z^2}{3}\right)^3}\)
\(=\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Tương tự ta có: \(y\left(z^2+x^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
\(z\left(x^2+y^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le\frac{2\sqrt{3}}{3}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
\(\Leftrightarrow\sqrt{3}\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Cuối cùng ta cần chứng minh được
\(2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\le2\left(x^2+y^2+z^2\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge1\)(đúng)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}\)
Ta có :
\(\(a^2+b^2+c^2=3\ge\frac{1}{3}\left(a+b+c\right)^2\Rightarrow a+b+c\le3\)\)
+) \(\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2b^2c^2}+\frac{4c^4}{2c^3+2c^2a^2}\)\)
\(\(\ge\frac{4\left(a^2+b^2+c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2b^2c^2+2c^2a^2}\)\)
\(\(\ge\frac{4.3^2}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2b^2c^2+2c^2a^2}\)\)
\(\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=\frac{36}{9+3}=3\ge a+b+c\left(dpcm\right)\)\)
_Minh ngụy_
Dễ thấy
\(3=a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le3\)
Do đó :
\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2b^2c^2}+\frac{4c^4}{2c^3+2c^2a^2}\)
\(\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2b^2c^2+2c^2a^2}\)
\(\ge\frac{36}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2b^2c^2+2c^2a^2}\)
\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=3\ge a+b+c\left(dpcm\right)\)
Áp dụng bđt cô-si, ta có: \(a+b^2\le\dfrac{a^2+1}{2}+b^2=\dfrac{a^2+2b^2+1}{2}\)
=>\(\dfrac{2a^2}{a+b^2}\ge\dfrac{4a^2}{a^2+2b^2+1}\)
CMTT: Khi đó: \(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{4a^2}{a^2+2b^2+1}+\dfrac{4b^2}{b^2+2c^2+1}+\dfrac{4c^2}{c^2+2a^2+1}\)
Áp dụng bđt Sơ-vác, ta có:
\(\dfrac{4a^4}{a^4+2a^2b^2+a^2}+\dfrac{4b^4}{b^4+2b^2c^2+b^2}+\dfrac{4c^4}{c^4+2c^2a^2+c^2}\ge\dfrac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=\dfrac{4.3^2}{3^2+3}=3\)
Do đó: \(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{4a^2}{a^2+2b^2+1}+\dfrac{4b^2}{b^2+2c^2+1}+\dfrac{4c^2}{c^2+2a^2+1}\ge3\)
Vì \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)
=>\(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge a+b+c\)
Dấu "=" xảy ra khi a=b=c=1
=>ĐPCM
\(\frac{a^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{\sqrt{ab^2}}{2}=a-\frac{\sqrt{ab.b}}{2}\ge a-\frac{ab+b}{4}\)
CMTT: \(VT\ge2.\left(a+b+c-\frac{a+b+c+ab+cb+ca}{4}\right)\)
Ta lại có \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\le\left(a+b+c\right)\sqrt{3\left(a^2+b^2+c^2\right)}=3\left(a+b+c\right)\)
=> \(ab+bc+ca\le a+b+c\)
=> \(VT\ge2\left(a+b+c-\frac{a+b+c}{2}\right)=a+b+c\left(dpcm\right)\)
Dấu bằng khi a=b=c=1
Mình có một cách khác. Các bạn xem nhé!
Đặt a = b = c . Ta có:
\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}=3\left(\frac{2a^2}{a^3}\right)\ge a^3\)(Do a = b = c nên ta thế a,b,c = a)
\(\Leftrightarrow\frac{2a^2}{a^3}+\frac{2b^2}{b^3}+\frac{2c^2}{c^3}=\frac{2a^2+2b^2+2c^2}{a^3+b^3+c^3}=\frac{6\left(a^2+b^2+c^2\right)}{\left(a^2.b^2.c^2\right):\left(a+b+c\right)}=\frac{6}{2}=3\)
\(\Rightarrow\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}>a+b+c^{\left(đpcm\right)}\)
Dấu = xảy ra khi a =b = c = 1
Ta có : \(\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}=\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và giả thiết a2 + b2 + c2 = 3abc ta có :
\(\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{\left(3abc\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{9}{a+b+c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c=1
Ta có BĐT \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)
Nên BĐT cần chứng minh là
\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{3}{2}\)
Đặt \(\hept{\begin{cases}a^2=x\\b^2=y\\c^2=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+y+z=3\\x,y,z>0\end{cases}}\)
Áp dụng BĐT AM-GM and Cauchy-Schwarz ta có:
\(Σ\frac{a^2}{a+b^2}=Σ\frac{x}{\sqrt{x}+y}=Σ\frac{x}{\sqrt{\frac{x\left(x+y+z\right)}{3}+y}}\)
\(=Σ\frac{6x}{2\sqrt{3x\left(x+y+z\right)}+6y}\geΣ\frac{6x}{3x+x+y+z+6y}=Σ\frac{6x}{4x+7y+z}\)
\(=Σ\frac{6x^2}{4x^2+7xy+xz}\ge\frac{6\left(x+y+z\right)^2}{Σ\left(4x^2+7xy+xz\right)}=\frac{3}{2}\)
-Nguồn : Xem câu hỏi
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)thì bài toán thành
\(x+y+z=2\) chứng minh rằng
\(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)
Trước hết ta chứng minh:
Ta có: \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge\frac{3x}{4}\)
\(\Leftrightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)
\(\Rightarrow VP\ge\left(x+y+z\right)-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
Mình sẽ giải theo pp tập thể dục nha :
Theo bài ra , ta có :
\(a^2+b^2+c^2=3\)
\(\Leftrightarrow a^2+b^2+c^2-3=0\)
\(\Leftrightarrow a^2-1+b^2-1+c^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+1\right)+\left(b-1\right)\left(b+1\right)+\left(c-1\right)\left(c+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-1\right)\left(a+1\right)=0\\\left(b-1\right)\left(b+1\right)=0\\\left(c-1\right)\left(c+1\right)=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=-1\end{cases}}\\\orbr{\begin{cases}b=1\\b=-1\end{cases}}\\\orbr{\begin{cases}c=1\\c=-1\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=-1\end{cases}}\\\orbr{\begin{cases}b=1\\b=-1\end{cases}}\\\orbr{\begin{cases}c=1\\\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=1;a=-1\\b=1;b=-1\\c=1;c=-1\end{cases}}\)
mà a,b,c là ba số không âm
=) a = b = c =1
Thay a = b = c = 1 vào biểu thức ở đầu bài , ta được
\(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\)
\(=\frac{1}{1+2+3}+\frac{1}{1+2+3}+\frac{1}{1+2+3}\)
\(=\frac{1}{6}\times3=\frac{1}{2}\)
Cái phần bé hơn hình như là có cái j đó sai sai vì gt đầu bài là ba số ko âm mà nên làm sao mà bé hơn được
\(\frac{2a^2}{a+b^2}=2a-\frac{2ab^2}{a+b^2}\ge2a-\frac{2ab^2}{2b\sqrt{a}}=2a-b\sqrt{a}\ge2a-\frac{b+ba}{2}\)
Tương tự rồi cộng từng vế ta có:
\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}\ge\frac{3}{2}\left(a+b+c\right)-\frac{ab+bc+ca}{2}\)
Lại có: \(\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)\ge3\left(ab+bc+ca\right)^2\Rightarrow a+b+c\ge ab+bc+ca\)
\(\Rightarrow VT\ge\frac{3}{2}\left(a+b+c\right)-\frac{a+b+c}{2}\ge a+b+c\)
Dấu "=' khi a=b=c=1
Làm 2 cách nhá
\(\frac{2a^2}{a+b^2}=\frac{2a^2}{\frac{a^2+1}{2}+b^2}=\frac{4a^2}{a^2+2b^2+1}=\frac{4a^4}{a^4+2a^2b^2+a^2}\)
Tương tự rồi theo Cauchy Schwarz ta có được:
\(LHS\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2+3}=\frac{36}{\left(a^2+b^2+c^2\right)^2+3}=\frac{36}{12}=3\)
Đẳng thức xảy ra tại a=b=c=1