\(\dfrac{ab}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 4 2018

Lời giải:

Vì \(a+b+c=6\) nên BĐT cần chứng minh tương đương với:

\(\frac{ab}{2b+c+a+b+c}+\frac{bc}{2c+a+a+b+c}+\frac{ca}{2a+b+a+b+c}\leq 1(*)\)

Thật vậy, áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{2b+c+a+b+c}=\frac{ab}{(b+c)+(c+a)+2b}\leq \frac{ab}{9}\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2b}\right)\)

Hoàn toàn tương tự:

\(\frac{bc}{2c+a+a+b+c}\leq \frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)\)

\(\frac{ca}{2a+b+a+b+c}\leq \frac{ca}{9}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{2a}\right)\)

Cộng các BĐT vừa thu được lại ta có:

\(\text{VT}\leq \frac{1}{9}\left(\frac{ab+ac}{b+c}+\frac{ab+bc}{a+c}+\frac{bc+ca}{a+b}+\frac{a+b+c}{2}\right)\)

\(\Leftrightarrow \text{VT}\leq \frac{1}{9}\left(a+b+c+\frac{a+b+c}{2}\right)=\frac{1}{9}\left(6+\frac{6}{2}\right)=1\)

BĐT \((*)\) hoàn tất, ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c=2\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{ab}{6+2b+c}+\frac{bc}{6+2c+a}+\frac{ca}{6+2a+b}=\frac{ab}{a+b+c+2b+c}+\frac{bc}{a+b+c+2c+a}+\frac{ca}{a+b+c+2a+b}\)

\(=\frac{ab}{2b+(a+c)+(b+c)}+\frac{bc}{2c+(a+b)+(a+c)}+\frac{ca}{2a+(b+a)+(b+c)}\)

\(\leq \frac{ab}{9}\left(\frac{1}{2b}+\frac{1}{a+c}+\frac{1}{b+c}\right)+\frac{bc}{9}\left(\frac{1}{2c}+\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{ca}{9}\left(\frac{1}{2a}+\frac{1}{b+a}+\frac{1}{b+c}\right)\)

\(\text{VT}\leq \frac{a+b+c}{18}+\frac{ab+bc}{9(a+c)}+\frac{ab+ac}{9(b+c)}+\frac{bc+ac}{9(a+b)}\)

\(\text{VT}\leq \frac{(a+b+c)}{6}=\frac{6}{6}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$

3 tháng 4 2018

Áp dụng BĐT AM-Gm: ( dạng \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\))

\(VT=\sum\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\sum\dfrac{a}{2}+\sum\left[\dfrac{ab}{a+c}+\dfrac{bc}{a+c}\right]\right)\)

\(=\dfrac{1}{9}\left(\dfrac{a+b+c}{2}+a+b+c\right)=\dfrac{1}{6}\left(a+b+c\right)\)

\(\le\dfrac{1}{6}\sqrt{3\left(a^2+b^2+c^2\right)}=1\) (đpcm)

Dấu = xảy ra khi a=b=c=2

NV
6 tháng 3 2022

\(ab+bc+ca=abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Đặt vế trái của BĐT cần chứng minh là P

Ta có:

\(\dfrac{1}{a+2b+3c}=\dfrac{1}{a+b+b+c+c+c}\le\dfrac{1}{6^2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+2b+3c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\right)\)

Tương tự:

\(\dfrac{1}{b+2c+3a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{3}{a}\right)\) ; \(\dfrac{1}{c+2a+3b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{2}{a}+\dfrac{3}{b}\right)\)

Cộng vế:

\(P\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

23 tháng 6 2017

$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

24 tháng 6 2017

còn câu 1 nữa Ace Legona

29 tháng 11 2017

a) ta có

\(3\left(a+b+c\right)=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\)

\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)

Áp dụng BĐT Cauchy ta có

\(a^3+ab^2\ge2a^2b\) ; \(b^3+bc^2\ge2b^2c\) ; \(c^3+ca^2\ge2c^2a\)

\(\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\ge3\left(a^2b+b^2c+c^2a\right)\)\(\Rightarrow3\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a+b+c\ge a^2b+b^2c+c^2a\) (1)

Áp dụng BĐT C.B.S ta có

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a+b+c\le3\) (2)

từ (1) và (2) ta được đpcm

29 tháng 11 2017

b) Áp dụng BĐT Cauchy ta có :

\(ab\le\dfrac{a^2+b^2}{2}=\dfrac{3-c^2}{2}\) tương tự

\(bc\le\dfrac{3-a^2}{2}\) ; \(ac\le\dfrac{3-b^2}{2}\)

BĐT cần chứng minh trở thành :

\(\dfrac{3-a^2}{2\left(3+a^2\right)}+\dfrac{3-b^2}{2\left(3+b^2\right)}+\dfrac{3-c^2}{2\left(3+c^2\right)}\le\dfrac{3}{4}\)

Ta chứng minh BĐT phụ sau

\(\dfrac{3-c^2}{2\left(3+c^2\right)}\le\dfrac{c^2}{4}\)\(\Leftrightarrow12-4c^2\le2c^2\left(3+c^2\right)\Leftrightarrow c^4+5c^2+6\ge0\)

\(\Leftrightarrow\left(c^2+2\right)\left(c^2+3\right)\ge0\) (luôn đúng)

tương tự : \(\dfrac{3-a^2}{2\left(3+c^2\right)}\le\dfrac{a^2}{4}\) ; \(\dfrac{3-b^2}{2\left(3+b^2\right)}\le\dfrac{b^2}{4}\)

Cộng Ba vế BĐT trên lại ta có:

\(\dfrac{3-a^2}{2\left(3+a^2\right)}+\dfrac{3-b^2}{2\left(3+b^2\right)}+\dfrac{3-c^2}{2\left(3+c^2\right)}\le\dfrac{a^2+b^2+c^2}{4}=\dfrac{3}{4}\)

Vậy ta có đpcm

17 tháng 9 2017

\(\sum\dfrac{a}{\left(a^2+1\right)+2b+2}\le\sum\dfrac{a}{2\left(a+b+1\right)}=\dfrac{1}{2}\)

17 tháng 9 2017

Nể''ss :D

9 tháng 9 2017

Nhận xét: Với x,y > 0 ta có:

\(4xy\le\left(x+y\right)^2\)

<=> \(\dfrac{1}{x+y}\le\dfrac{x+y}{4xy}\Leftrightarrow\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

Xảy ra khi x = y

Áp dụng và bài ta có:

\(\dfrac{1}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{2a}+\dfrac{1}{b+c}\right)\le\dfrac{1}{4}\left[\dfrac{1}{2a}+\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\right]=\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{2c}\right)\)

Tương tự: \(\dfrac{1}{a+2b+c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2c}\right)\);

\(\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{c}\right)\)

Cộng 3 vế bđt có:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{3}{4}\)

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 1:

Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min

Nếu chuyển tìm max thì em tìm như sau:

Áp dụng BĐT Cauchy_Schwarz:

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)

Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)

Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 2:

Áp dụng BĐT Cauchy-Schwarz :

\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự:

\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)

\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)

Cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)

hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$