Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
doan thi khanh linh câm cái mồm đi.đã ngu lại còn thích k
áp dụng co si ta có:
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}\)
\(=\left(\frac{\sqrt{bc}}{\sqrt{a}}+\frac{\sqrt{ca}}{\sqrt{b}}\right)+\left(\frac{\sqrt{ca}}{\sqrt{b}}+\frac{\sqrt{ab}}{\sqrt{c}}\right)+\left(\frac{\sqrt{ab}}{\sqrt{c}}+\frac{\sqrt{bc}}{\sqrt{a}}\right)\)
\(\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
\(\Rightarrow Q.E.D\)
Áp dụng BĐT Cô - si cho 3 số không âm:
\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{a^3}{b^3}}+1\ge3\sqrt[3]{\sqrt{\frac{a^6}{b^6}}}=\frac{3a}{b}\)
\(\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{b^3}{c^3}}+1\ge3\sqrt[3]{\sqrt{\frac{b^6}{c^6}}}=\frac{3b}{c}\)
\(\sqrt{\frac{c^3}{a^3}}+\sqrt{\frac{c^3}{a^3}}+1\ge3\sqrt[3]{\sqrt{\frac{c^6}{a^6}}}=\frac{3c}{a}\)
Cộng vế theo vế ,ta được:
\(2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
\(\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+3\)
\(\Rightarrow2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
\(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)
Vậy \(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)(đpcm)
Trâu bò chút!
Đặt \(\sqrt{\frac{a}{b}}=x;\sqrt{\frac{b}{c}}=y;\sqrt{\frac{c}{a}}=z\Rightarrow xyz=1\)
BĐT quy về chứng minh: \(x^3+y^3+z^3\ge x^2+y^2+z^2\)
Để ý rằng: \(x^3=\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{3}{2}x^2-\frac{1}{2}\)
Từ đó ta có: \(VT-VP=\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{1}{2}\left(\Sigma x^2-3\right)\)
\(\ge\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}\ge0\)
P/s: Nếu thích troll người thì thế ngược lại các biến đã đặt ta tìm được:
\(VT-VP\ge\Sigma_{cyc}\frac{\left(a-b\right)^2\left(2\sqrt{a}+\sqrt{b}\right)}{2b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)^2}\ge0\)
Ta có: \(a< a+b\left(a,b>0\right)\Rightarrow\frac{a}{a+b}< 1\)
Có: \(\frac{a}{a+b}=\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+b}}\)
Lại có: \(\frac{a}{b+a}< 1\Leftrightarrow\sqrt{\frac{a}{b+a}}< 1\Rightarrow\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+b}}< \sqrt{\frac{a}{a+b}}\Rightarrow\frac{a}{a+b}< \sqrt{\frac{a}{a+b}}\)
Chứng minh tương tự ta có:
\(\frac{b}{b+c}< \sqrt{\frac{b}{b+c}}\)
\(\frac{c}{c+a}< \sqrt{\frac{c}{c+a}}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \sqrt{\frac{a}{a+b}}+\sqrt{\frac{b}{b+c}}+\sqrt{\frac{c}{c+a}}\)
đpcm
Sai thì thôi nhé~
Mới lp 8
Ta có BĐT sau: \(\sqrt{\frac{1+a^2}{b+c}}\ge\frac{a+1}{\sqrt{2\left(b+c\right)}}\)(*)
Thật vậy, với a,b,c dương, ta có: (*)\(\Leftrightarrow\frac{1+a^2}{b+c}\ge\frac{\left(a+1\right)^2}{2\left(b+c\right)}\)
\(\Leftrightarrow\frac{1+a^2}{b+c}\ge\frac{\frac{\left(a+1\right)^2}{2}}{b+c}\Leftrightarrow1+a^2\ge\frac{a^2}{2}+a+\frac{1}{2}\)
\(\Leftrightarrow\frac{\left(a-1\right)^2}{2}\ge0\)(đúng với mọi \(a\inℝ\))
Tương tự, ta có: \(\sqrt{\frac{1+b^2}{c+a}}\ge\frac{b+1}{\sqrt{2\left(c+a\right)}}\)(2); \(\sqrt{\frac{1+c^2}{a+b}}\ge\frac{c+1}{\sqrt{2\left(a+b\right)}}\)(3)
Cộng theo vế của các BĐT (*), (2), (3), ta được:
\(\Sigma\sqrt{\frac{1+a^2}{b+c}}\ge\Sigma\frac{a+1}{\sqrt{2\left(b+c\right)}}\ge\Sigma\frac{a+1}{\frac{\left(b+c\right)+2}{2}}=\Sigma\frac{2\left(a+1\right)}{b+c+2}\)
\(=\Sigma\left(\frac{2a^2}{ab+ca+2a}+\frac{2}{b+c+2}\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{\left(ab+bc+ca\right)+\left(a+b+c\right)}+\frac{9}{a+b+c+3}\)(Theo BĐT Bunhiacopxki dạng phân thức)
\(\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)}+\frac{9}{a+b+c+3}\)
\(\ge\frac{3\left(a+b+c\right)}{a+b+c+3}+\frac{9}{a+b+c+3}=\frac{3\left(a+b+c+3\right)}{a+b+c+3}=3\)
Đẳng thức xảy ra khi a = b = c = 1
Ta có:\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)
TT\(\Rightarrow\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng vế theo vế ta được:\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\)
"="<=>a+b+c=2(a+b+c)<=>a+b+c=0(vô nghiệm vì a,b,c>0)
Dấu "=" không xảy ra=>đpcm
\(VT\ge\frac{4\left(\sum\sqrt{a}\right)^2}{2\sum\sqrt{a}}=2\sum\sqrt{a}=VP\)
Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:
\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)
Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)
Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)
Theo BĐT AM-GM ta có:
\(ab+bc+ca\le a^2+b^2+c^2\)
Áp dụng BĐT cauchy ta được:
\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)
Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)
Vậy đẳng thức xảy xa khi và chỉ khi a=b=c
Ta có bđt quen thuộc sau \(\frac{x}{y+z}< \frac{x+m}{y+z+m}\)
Áp dụng ta được \(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)
Chứng minh tương tự \(\frac{b}{c+a}< \frac{2b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{2c}{a+b+c}\)
Do đó \(VT< \frac{2a+2b+2c}{a+b+c}=2\)
Ta đi chứng minh VP > 2
Áp dụng bđt Cô-si có \(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)
\(\Rightarrow\sqrt{a\left(b+c\right)}\le\frac{a+b+c}{2}\)
\(\Rightarrow\sqrt{\frac{b+c}{a}}\le\frac{a+b+c}{2a}\)
\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Chứng minh tương tự \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng 3 vế lại ta được \(VP\ge\frac{2a+2b+2c}{a+b+c}=2\)
Do đó \(VP\ge2>VT\)
\(\Rightarrow VT< VP\left(Q.E.D\right)\)
Dấu "=" không xảy ra