Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết \(1\le a\le2\),suy ra
\(\left(a-1\right)\left(a-2\right)\le0\)
\(\Leftrightarrow a^2-3a+2\le0\)
Tương tự \(b^2-3b+2\le0\)
\(\Rightarrow a^2+b^2-3\left(a+b\right)+4\le0\)
Do đó
\(P=a^2+b^2-3\left(a+b\right)+4-\left(a+\frac{1}{a}\right)-\left(\frac{b}{4}+\frac{1}{b}\right)\)
\(P=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)^2-\left(\frac{\sqrt{b}}{2}-\frac{1}{\sqrt{b}}\right)^2-3\le-3\)
Đẳng thức xảy ra khi\(\hept{\begin{cases}\sqrt{a}=\frac{1}{\sqrt{a}}\\\frac{\sqrt{b}}{2}=\frac{1}{\sqrt{b}}\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}\)
Vậy \(max_P=-3\Leftrightarrow a=1;b=2\)
P/ s : Các bạn tham khảo nha
Áp dụng BĐT Cauchy - Schwarz và Cauchy ta có:
\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\ge\frac{b^2+c^2}{a^2}+a^2\cdot\frac{9}{b^2+c^2}\) (Cauchy - Schwarz)
\(=\left(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2}\right)+8\cdot\frac{a^2}{b^2+c^2}\)
\(\ge2\sqrt{\frac{b^2+c^2}{a^2}\cdot\frac{a^2}{b^2+c^2}}+8\cdot\frac{b^2+c^2}{b^2+c^2}\) (BĐT Cauchy)
\(=2+8=10\)
Dấu "=" xảy ra khi: \(a=b\sqrt{2}=c\sqrt{2}\)
Vậy Min(P) = 10 khi \(a=b\sqrt{2}=c\sqrt{2}\)
Từ giả thiết \(1\le a\le2\) => ( a - 1).(a - 2) \(\le\) 0 =>\(a^2-3a+2\le0\)
Từ giả thiết \(1\le b\le2\) => (b - 1)( b - 2) \(\le\) 0 => \(a^2-3b+2\le0\)
Vì vậy ta có P:
\(=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)^2-\left(\dfrac{\sqrt{b}}{2}-\dfrac{1}{\sqrt{b}}\right)^2-3\le-3\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=\dfrac{1}{\sqrt{q}}\\\dfrac{\sqrt{b}}{2}=\dfrac{1}{\sqrt{b}}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy a =1 ; b = 2 là giá trị lớn nhất của biểu thức
Đặt bđt là (*)
Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)
\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)
Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)
Hay \(n\le2\)
Với n=2 . Thay vào (*) : ta cần CM BĐT
\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)
Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Tương tự ta có:
\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)
Ta cần CM:
\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)
=> đpcm
Dấu '=' xảy ra khi a=b=c
=> số nguyên dương lớn nhất : n=2( thỏa mãn)