K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Bài này bạn sử dụng PP chọn điểm rơi:

Áp dụng BĐT AM-GM:

\(4a^2+4\geq 8a\)

\(6b^2+\frac{8}{3}\geq 8b\)

\(3c^2+\frac{16}{3}\geq 8c\)

Cộng theo vế các BĐT trên thu được:

\(4a^2+6b^2+3c^2+12\geq 8(a+b+c)\)

\(\Leftrightarrow A\geq 8.3-12=12\)

Vậy \(A_{\min}=12\Leftrightarrow (a,b,c)=(1,\frac{2}{3}, \frac{4}{3})\)

3 tháng 11 2019

\(3\left(4a^2+6b^2+3c^2\right)-4\left(a+b+c\right)^2\)

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{16}\ge0\)

Rồi làm nốt.

3 tháng 11 2019

Sửa lại tí: 

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{2}\ge0\) nha!

Do đó \(4a^2+6b^2+3c^2\ge\frac{4}{3}\left(a+b+c\right)^2=12\)

Vậy...

NV
21 tháng 3 2022

Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)

Ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)

Tương tự:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)

Cộng vế:

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)

\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)

NV
13 tháng 5 2020

\(3^2=\left(a+b+c\right)^2=\left(\frac{1}{2}.2a+\frac{1}{\sqrt{6}}.\sqrt{6}b+\frac{1}{\sqrt{3}}.\sqrt{3}c\right)^2\)

\(\Rightarrow9\le\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{3}\right)\left(4a^2+6b^2+3c^2\right)\)

\(\Rightarrow4a^2+6b^2+3c^2\ge\frac{9}{\frac{1}{4}+\frac{1}{6}+\frac{1}{3}}=12\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a+b+c=3\\4a=6b=3c\end{matrix}\right.\) \(\Rightarrow\left(a;b;c\right)=\left(1;\frac{2}{3};\frac{4}{3}\right)\)

28 tháng 5 2020

Ta có: \(\frac{1+3a}{1+b^2}=\left(1+3a\right).\frac{1}{1+b^2}=\left(1+3a\right)\left(1-\frac{b^2}{1+b^2}\right)\)

\(\ge\left(1+3a\right)\left(1-\frac{b^2}{2b}\right)=\left(1+3a\right)\left(1-\frac{b}{2}\right)\)

\(=3a+1-\frac{b}{2}-\frac{3ab}{2}\)(1)

Tương tự ta có: \(\frac{1+3b}{1+c^2}=3b+1-\frac{c}{2}-\frac{3bc}{2}\)(2); \(\frac{1+3c}{1+a^2}=3c+1-\frac{a}{2}-\frac{3ca}{2}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)\(\ge3\left(a+b+c\right)-\frac{a+b+c}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(=\frac{5\left(a+b+c\right)}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)

\(\ge\frac{5.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{3.3}{2}+3=\frac{15}{2}-\frac{9}{2}+3=6\)

Đẳng thức xảy ra khi a = b = c = 1

15 tháng 11 2021

\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

14 tháng 5 2021

Ta có: \(a+2b+3c=13\)

\(\Leftrightarrow\left(a-1\right)+2\left(b-1\right)+3\left(c-1\right)=7\)

Mà \(7^2=\left[\left(a-1\right)+2\left(b-1\right)+3\left(c-1\right)\right]^2\)

\(\le\left(1^2+2^2+3^2\right)\left[\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\right]\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge\frac{7}{2}\)

Dấu "=" xảy ra khi: \(a-1=\frac{b-1}{2}=\frac{c-1}{3}\Rightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{5}{2}\end{cases}}\)

15 tháng 9 2023

1) \(\left\{{}\begin{matrix}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{matrix}\right.\)  \(\left(a;b;c\in R\right)\)

Ta có :

\(a^3+b^3+c^3\ge3abc\) (Bất đẳng thức Cauchy)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\left(a^3+b^3+c^3=3abc\right)\)

Thay \(a=b=c\) vào \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\) ta được

\(\Leftrightarrow P=\dfrac{6a^2}{6a^2}=1\)

15 tháng 9 2023

\(3^x=y^2+2y\left(x;y>0\right)\)

\(\Leftrightarrow3^x+1=y^2+2y+1\)

\(\Leftrightarrow3^x+1=\left(y+1\right)^2\left(1\right)\)

- Với \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow3^0+1=\left(0+1\right)^2\Leftrightarrow2=1\left(vô.lý\right)\)

- Với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)  

\(pt\left(1\right)\Leftrightarrow3^1+1=\left(1+1\right)^2=4\left(luôn.luôn.đúng\right)\)

- Với \(x>1;y>1\)

\(\left(y+1\right)^2\) là 1 số chính phương

\(3^x+1=\overline{.....1}+1=\overline{.....2}\) không phải là số chính phương

\(\Rightarrow\left(1\right)\) không thỏa với \(x>1;y>1\)

Vậy với \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) thỏa mãn đề bài