\(P=\dfrac{a}{b^2}+\dfrac{b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq \left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)^2\)

\(\Rightarrow \frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=ab+bc+ac\)

Do đó:
\(P\geq ab+bc+ac+\frac{9}{2(a+b+c)}\)

Áp dụng BĐT AM-GM:

\(ab+bc+ac+\frac{9}{2(a+b+c)}=\frac{ab+bc+ac}{2}+\frac{ab+bc+ac}{2}+\frac{9}{2(a+b+c)}\geq 3\sqrt[3]{\frac{9(ab+bc+ac)^2}{8(a+b+c)}}\)

Theo một kết quả quen thuộc của BĐT AM-GM:

\((ab+bc+ac)^2\geq 3abc(a+b+c)\)

Thay \(abc=1\Rightarrow (ab+bc+ac)^2\geq 3(a+b+c)\)

Do đó: \(P\geq ab+bc+ac+\frac{9}{2(a+b+c)}\geq 3\sqrt[3]{\frac{27}{8}}=\frac{9}{2}\)

Vậy \(P_{\min}=\frac{9}{2}\Leftrightarrow a=b=c=1\)

21 tháng 5 2018

ap dung bdt cosi ta co : \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge3\sqrt[3]{\dfrac{abc}{\left(abc\right)^2}}=3\) (1)

ta lai co \(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\dfrac{9}{2\left(a+b+c\right)}=\dfrac{9\left(a+b+c\right)}{2\left(a+b+c\right)^2}\ge\dfrac{9.3}{2.3^2}=\dfrac{3}{2}\) (2)

tu (1) vs (2) \(\Rightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{9}{2\left(a+b+c\right)}\ge3+\dfrac{3}{2}=\dfrac{9}{2}\)

dau "=" xay ra khi \(a=b=c=1\)

xl ! may mk bi hu nen khong viet dau dc bn thong cam

Y
23 tháng 5 2019

+ \(2a+b+c=\left(a+b\right)+\left(a+c\right)\)

\(\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) ( theo AM-GM )

\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)

\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow b=c\)

+ Tương tự : \(\frac{1}{\left(2b+c+a\right)^2}\le\frac{1}{4\left(a+b\right)\left(b+c\right)}\). Dấu "=" xảy ra <=> a = c

\(\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(b+c\right)}\). Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Do đó : \(P\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(b+c\right)}+\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\)

\(\Rightarrow P\le\frac{1}{2}\cdot\frac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}\)\(=8abc\)

\(\Rightarrow P\le\frac{a+b+c}{16abc}\)

+ \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\). Dấu :=" xảy ra \(\Leftrightarrow a=b\)

\(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\). Dấu "=" xảy ra <=> b = c

\(\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\). Dấu "=" xảy ra <=> c = a

\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Rightarrow3\ge\frac{a+b+c}{abc}\) \(\Rightarrow a+b+c\le3abc\)

\(\Rightarrow P\le\frac{3abc}{16abc}=\frac{3}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

5 tháng 12 2018

Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)

                             LG

Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)

                                  \(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)

                                 \(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)

                                 \(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)

Khi đó :\(B=a+b+c+\frac{1}{abc}\)

   \(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)

\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)

 \(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

Vậy .........

4 tháng 12 2018

2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)

Áp dụng BĐT AM-GM ta có:

\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)

\(A\ge a+b+c-\frac{6}{2}\)

\(A\ge6-3\)

\(A\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)

                                 \(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)

                                 \(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)

Lấy \(\left(1\right)-\left(3\right)\)ta có:

\(2a-2c=c+b-a-b=c-a\)

\(\Rightarrow2a-2c-c+a=0\)

\(\Leftrightarrow3.\left(a-c\right)=0\)

\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)

Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)

\(\Rightarrow a=b=c=2\)

Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)

16 tháng 9 2023

Ta có: \(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Rightarrow bc+ca=2ca\)

\(P=\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}=\dfrac{ac+bc}{2ca-bc}+\dfrac{ca+ab}{2ca-ab}\)

\(=\dfrac{ca+bc}{ab}+\dfrac{ca+ab}{bc}=\dfrac{c}{b}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{a}{c}=\dfrac{c+a}{b}+\dfrac{c}{a}+\dfrac{a}{c}\)

Ta có :

\(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{4}{a+c}\left(\text{Svácxơ}\right)\)\(\Rightarrow c+a\ge2b\)

Áp dụng bđt cô si cho 2 số dương

\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{c}{a}.\dfrac{a}{c}}=2\)

\(\Rightarrow P\ge\dfrac{2b}{b}+2=4\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

AH
Akai Haruma
Giáo viên
25 tháng 3 2019

Lời giải:

\(a+b=ab\Rightarrow \frac{1}{a}+\frac{1}{b}=1\)

Đặt \(\left(\frac{1}{a}, \frac{1}{b}\right)=(x,y)\) thì bài toán trở thành:

Cho $x,y>0$ thỏa mãn $x+y=1$. Tìm GTNN của biểu thức:

\(P=\frac{x^2}{2x+1}+\frac{y^2}{2y+1}+\frac{\sqrt{(x^2+1)(y^2+1)}}{xy}\)

-----------------------------

Áp dụng BĐT Cauchy-Schwarz, AM-GM:

\(\frac{x^2}{2x+1}+\frac{y^2}{2y+1}\geq \frac{(x+y)^2}{2x+1+2y+1}=\frac{1}{2+2}=\frac{1}{4}\)

\((x^2+1)(y^2+1)\geq (xy+1)^2\Rightarrow \frac{\sqrt{(x^2+1)(y^2+1)}}{xy}\geq \frac{xy+1}{xy}=1+\frac{1}{xy}\)

\(\geq 1+\frac{1}{\frac{(x+y)^2}{4}}=5\)

\(\Rightarrow P=\frac{x^2}{2x+1}+\frac{y^2}{2y+1}+\frac{\sqrt{(x^2+1)(y^2+1)}}{xy}\geq \frac{1}{4}+5=\frac{21}{4}\)

Vậy \(P_{\min}=\frac{21}{4}\Leftrightarrow x=y=\frac{1}{2}\Leftrightarrow a=b=2\)

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự