Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{bc}{a+b+c+a}\le\dfrac{bc}{4}\cdot\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\ \dfrac{ac}{b+c+a+b}\le\dfrac{ac}{4}\cdot\left(\dfrac{1}{b+c}+\dfrac{1}{a+b}\right)\\ \dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\cdot\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\ \Leftrightarrow VT\le\dfrac{1}{a+b}\left(\dfrac{bc}{4}+\dfrac{ac}{4}\right)+\dfrac{1}{a+c}\left(\dfrac{bc}{4}+\dfrac{ab}{4}\right)+\dfrac{1}{b+c}\left(\dfrac{ac}{4}+\dfrac{ab}{4}\right)\\ =\dfrac{1}{a+b}\cdot\dfrac{c\left(a+b\right)}{4}+\dfrac{1}{a+c}\cdot\dfrac{b\left(a+c\right)}{4}+\dfrac{1}{b+c}\cdot\dfrac{a\left(b+c\right)}{4}\\ =\dfrac{c}{4}+\dfrac{b}{4}+\dfrac{a}{4}\\ =\dfrac{a+b+c}{4}\left(đfcm\right)\)
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}=\sqrt{\dfrac{ab+2c^2}{a^2+b^2+ab}}\)\(=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+c^2+c^2\right)}}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)\(\ge\dfrac{2\left(ab+2c^2\right)}{2\left(a^2+b^2\right)+2c^2}\)\(=\dfrac{ab+2c^2}{a^2+b^2+c^2}\)
\(\Rightarrow\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}\ge ab+2c^2\)
Tương tự: \(\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\); \(\sqrt{\dfrac{ac+2b^2}{1+ac-b^2}}\ge ac+2b^2\)
Cộng vế với vế \(\Rightarrow VT\ge2a^2+2b^2+2c^2+ab+bc+ac=2+ab+bc+ac\)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}=\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\)
áp dụng BDT CAUCHY SCHAWRZ
\(=>\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)
\(=\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{3\left(ab+bc+ac\right)}=1\)
cái chỗ bđt cauchy là bđt gì bạn có thể ghi cụ thể nó ra được ko ạ
\(4.\left(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}-\dfrac{3}{2}\right)+\dfrac{ab^2+bc^2+ca^2+abc}{a^2b+b^2c+c^2a+abc}-1\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b+b^2c+c^2a+abc}-2.\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)-2\left(a^2b+b^2c+c^2a+abc\right)\right]}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left[\left(a-b\right)\left(b-c\right)\left(c-a\right)\right]^2}{\left(a^2b+b^2c+c^2a+abc\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
Bất đẳng thức hiển nhiên đúng
Vậy ta có điều phải chúng minh. Dấu hằng đẳng thức xảy ra khi \(a=b=c\)
-Chúc bạn học tốt-
Bạn giải thích hộ mình từ dòng 1 xuống dòng 2 đc ko ạ ?
\(A=\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ca+2bc}>=\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ac\right)}\)>=1
\(\Leftrightarrow\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}-2+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}-2+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}-2\le\dfrac{3}{2}-6\)
\(\Leftrightarrow\dfrac{b^2+2ac}{a\left(b+c\right)}+\dfrac{c^2+2ab}{b\left(c+a\right)}+\dfrac{a^2+2bc}{c\left(a+b\right)}\ge\dfrac{9}{2}\)
\(\Leftrightarrow\dfrac{b^2}{ab+ac}+\dfrac{c^2}{bc+ab}+\dfrac{a^2}{ac+bc}+\dfrac{2c^2}{bc+c^2}+\dfrac{2a^2}{ac+a^2}+\dfrac{2b^2}{ab+b^2}\ge\dfrac{9}{2}\)
Ta có:
\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}+\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
\(\Leftrightarrow VT\ge\left(a+b+c\right)^2\left(\dfrac{1}{2\left(ab+bc+ca\right)}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2+ab+bc+ca}\right)\)
\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)+2\left(a^2+b^2+c^2+ab+bc+ca\right)}\)
\(\Leftrightarrow VT\ge\dfrac{9\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\dfrac{9}{2}\)
C/m BĐT : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
Áp dụng BĐT Sơ-vác-sơ:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}\ge\dfrac{9}{x+y+z}\)
Ta có: \(9\dfrac{ab}{a+3b+2c}=\dfrac{9ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\left(1\right)\)
CM tương tự
\(\dfrac{9bc}{b+3c+2a}\le\dfrac{bc}{a+c}+\dfrac{bc}{a+b}+\dfrac{b}{2}\left(2\right)\)
\(\dfrac{9ca}{c+3a+2b}\le\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{c}{2}\left(3\right)\)
Cộng vế (1), (2), (3) => đpcm
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{bc}{4\left(a+c\right)}+\dfrac{ab}{4\left(a+c\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)
\(\Rightarrow VT\le\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{bc+ab}{4\left(a+c\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{b\left(c+a\right)}{4\left(a+c\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)
\(\Leftrightarrow\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}+\dfrac{ab}{a+b+2c}\le\dfrac{a+b+c}{4}\) ( đpcm )