Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 ) b )
\(a+b+c+d=0\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)
\(\left\{{}\begin{matrix}a+b+c>0\left(1\right)\\ab+bc+ac>0\left(2\right)\\abc>0\left(3\right)\end{matrix}\right.\)
Giả sử trong ba số a,b,c có một số âm hay bằng o . Giả sử số đó là a.
Khi đó : (1) ==> b + c > -a \(\ge\) 0 ==> a(b+c) \(\le0\)
Do đó : (2) ==> bc + a(b+c) > 0 ==> bc > -a ( b+c) \(\ge\) 0 . Mà a < 0 ==> abc < 0 (vô lí vì abc >0 do (3))
Vậy cả ba số a , b ,c đều dương
Cái này mình biết chút... nhưng mà giải trên đây không tiện lắm bạn có chới zalo ko gửi ad qua cho mình để kp rồi mình gửi lời giải qua luôn...
\(9x^2y^2+y^2-6xy-2y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)
\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(1\right)\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow x^2+y^2+z^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)
Hướng suy nghĩ của bạn đúng rồi.
Lời giải:
Phản chứng. Giả sử $y^2< xz$.
$0< y^2< xz$
$0< b^2< ac$
$\Rightarrow b^2y^2< xzac$
Theo đề bài ta có:
$2by=az+cx$
$\Rightarrow (az+cx)^2=4b^2y^2$
$\Leftrightarrow a^2z^2+c^2x^2+2acxz=4b^2y^2$
$a^2z^2+c^2x^2=4b^2y^2-2acxz< 4xzac-2acxz=2acxz$
$\Leftrightarrow (az-cx)^2< 0$ (vô lý)
Do đó điều giả sử là sai.
Tức là $y^2\geq xz$