\(\left\{{}\begin{matrix}az-2by+cx=0\\ac-b^2>0\end{matr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 6 2021

Hướng suy nghĩ của bạn đúng rồi.

Lời giải:

Phản chứng. Giả sử $y^2< xz$.

$0< y^2< xz$

$0< b^2< ac$

$\Rightarrow b^2y^2< xzac$

Theo đề bài ta có:

$2by=az+cx$

$\Rightarrow (az+cx)^2=4b^2y^2$

$\Leftrightarrow a^2z^2+c^2x^2+2acxz=4b^2y^2$

$a^2z^2+c^2x^2=4b^2y^2-2acxz< 4xzac-2acxz=2acxz$

$\Leftrightarrow (az-cx)^2< 0$ (vô lý)

Do đó điều giả sử là sai.

Tức là $y^2\geq xz$

15 tháng 9 2018

2 ) b )

\(a+b+c+d=0\)

\(\Leftrightarrow a+b=-\left(c+d\right)\)

\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)

16 tháng 8 2017

\(\left\{{}\begin{matrix}a+b+c>0\left(1\right)\\ab+bc+ac>0\left(2\right)\\abc>0\left(3\right)\end{matrix}\right.\)

Giả sử trong ba số a,b,c có một số âm hay bằng o . Giả sử số đó là a.

Khi đó : (1) ==> b + c > -a \(\ge\) 0 ==> a(b+c) \(\le0\)

Do đó : (2) ==> bc + a(b+c) > 0 ==> bc > -a ( b+c) \(\ge\) 0 . Mà a < 0 ==> abc < 0 (vô lí vì abc >0 do (3))

Vậy cả ba số a , b ,c đều dương

1 tháng 5 2019
https://i.imgur.com/QWNY33W.jpg
27 tháng 5 2019

Cái này mình biết chút... nhưng mà giải trên đây không tiện lắm bạn có chới zalo ko gửi ad qua cho mình để kp rồi mình gửi lời giải qua luôn...

21 tháng 6 2019

ok pn. Số zalo của mk là: 037 678 1096. Cảm ơn bạn nhiều

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn

Y
7 tháng 5 2019

\(9x^2y^2+y^2-6xy-2y+2\)

\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)

\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)

30 tháng 12 2019

Theo t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)

\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(1\right)\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\Leftrightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow x^2+y^2+z^2=\left(x+y+z\right)^2\)

\(\Leftrightarrow2\left(xy+yz+xz\right)=0\Leftrightarrow xy+yz+xz=0\left(đpcm\right)\)