\(\hept{\begin{cases}1\le a,b,c\le3\\a+b+c=6\end{cases}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có  \(\hept{\begin{cases}a+b+c=3\\a,b,c>0\end{cases}\Rightarrow\hept{\begin{cases}a+b+c=3\\a,b,c\ge1\end{cases}}}\)

Vì \(a,b,c\ge1\)

\(\Rightarrow a+b+c\le a^2+b^2+c\)

\(\Rightarrow\frac{1}{a+b+c}\ge\frac{1}{a^2+b^2+c}\left(1\right)\)

Tương tự 

\(\frac{1}{a+b+c}\ge\frac{1}{b^2+c^2+a}\left(2\right)\)

\(\frac{1}{a+b+c}\ge\frac{1}{c^2+b^2+a}\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\frac{3}{a+b+c}\ge\frac{1}{a^2+b^2+c}+\frac{1}{b^2+c^2+a}+\frac{1}{c^2+a^2+b}\)

\(\Rightarrow\frac{3}{3}\ge\frac{1}{a^2+b^2+c}+\frac{1}{b^2+c^2+a}+\frac{1}{c^2+a^2+b}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\)

Vậy Max S1 = 3/3 = 1 \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\) (4)

Vì \(a,b,c\ge1\)

\(\Rightarrow a+b+c\le a^2+b+c\)

\(\Rightarrow\frac{1}{a+b+c}\ge\frac{1}{a^2+b+c}\left(5\right)\)

Tương tự 

\(\frac{1}{a+b+c}\ge\frac{1}{b^2+c+a}\left(6\right)\)

\(\frac{1}{a+b+c}\ge\frac{1}{c^2+b+a}\left(7\right)\)

Từ \(\left(5\right);\left(6\right);\left(7\right)\Rightarrow\frac{3}{a+b+c}\ge\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}\)

\(\frac{3}{3}\ge\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\)

Vậy Max S2 = 3/3 = 1 \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\) (8)

Từ (4); (8) => GTLN S1 = GTLN S2  (đpcm)

Bài ezzz =))))

\(VT=\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(c+a\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)

Áp dụng bđt Bunhiacopski ta có

\(VT\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

28 tháng 9 2020

cách 2 . đặt ẩn phụ nhé bro

Đặt \(\left\{\frac{1}{a};\frac{1}{b};\frac{1}{c}\right\}\rightarrow\left\{x;y;z\right\}\)\(\Rightarrow xyz=1\), khi đó :

Bất đẳng thức cần chứng minh tương đương :\(\frac{1}{\left(\frac{1}{x}\right)^2\left(\frac{1}{y}+\frac{1}{z}\right)}+\frac{1}{\left(\frac{1}{y}\right)^2\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{\left(\frac{1}{z}\right)^2\left(\frac{1}{x}+\frac{1}{y}\right)}\ge\frac{3}{2}\)

\(< =>\frac{x^3yz}{y+z}+\frac{xy^3z}{z+x}+\frac{xyz^3}{x+y}\ge\frac{3}{2}< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)

Sử dụng bất đẳng thức AM-GM ta có : \(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{x+z}+\frac{x+z}{4}\right)+\left(\frac{z^2}{x+y}+\frac{x+y}{4}\right)\ge2\sqrt{\frac{x^2}{4}}+2\sqrt{\frac{y^2}{4}}+2\sqrt{\frac{z^2}{4}}=\frac{2x}{2}+\frac{2y}{2}+\frac{2z}{2}=x+y+z\)

Suy ra :\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{x+y+y+z+z+x}{4}\ge x+y+z< =>\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

Theo đánh giá của AM-GM thì : \(\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)Từ đó ta suy ra được :

 \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\ge\frac{3}{2}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)

20 tháng 8 2017

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

20 tháng 8 2017

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

22 tháng 5 2021

có vấn đề

22 tháng 5 2021

anhtoan

bài này có người giải rồi