K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

vì b2 = ac nên \(\frac{a}{b}=\frac{b}{c}\)

vì c2=bd nên \(\frac{c}{d}=\frac{b}{c}\)

suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)   (1)

suy ra \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{2b^3}{2c^3}=\frac{3c^3}{3d^3}=\frac{a^3+2b^3+3c^3}{b^3+2c^3+3d^3}\)(2)

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{2b}{2c}=\frac{3c}{3d}=\frac{a+2b+3c}{b+2c+3d}\)suy ra \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a+2b+3c}{b+2c+3d}\right)^3\)(3)

Từ (1), (2) và (3) suy ra điều phải chứng minh

18 tháng 7 2017

- viết lại cái đề

* Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

* Vậy \(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\left(1\right)\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow3b=3c\Rightarrow b=c\left(2\right)\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow3c=3d\Rightarrow c=d\left(3\right)\)

\(\frac{d}{3a}=\frac{1}{3}\Rightarrow3d=3a\Rightarrow d=a\left(4\right)\)

từ (1),(2),(3),(4) ta có:

a=b,b=c,c=d,d=a

=> a=b=c=d