Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y,z>0\)
Áp dụng BĐT Caushy cho 3 số ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)
\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)
Áp dụng BĐT Caushy-Schwarz ta có:
\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)
\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)
\(P=0\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=0\)
Lời giải:
Áp dụng BĐT AM-GM thì:
$1=\frac{3}{2}x^2+y^2+z^2+yz=\frac{3}{2}x^2+(y+z)^2-yz\geq \frac{3}{2}x^2+(y+z)^2-\frac{(y+z)^2}{4}=\frac{3}{2}x^2+\frac{3}{4}(y+z)^2$
Áp dụng BĐT Bunhiacopxky:
$P^2=(x+y+z)^2\leq [\frac{3}{2}x^2+\frac{3}{4}(y+z)^2](\frac{2}{3}+\frac{4}{3})\leq 1.2$
$\Leftrightarrow P^2\leq 2$
$\Rightarrow -\sqrt{2}\leq P\leq \sqrt{2}$
Vậy $P_{\min}=-\sqrt{2}$ tại \((x,y,z)=(\frac{-\sqrt{2}}{3};\frac{-\sqrt{2}}{3}; \frac{-\sqrt{2}}{3}) \)
$P_{\max}=\sqrt{2}$ tại \((x,y,z)=(\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3})\)
⇔3x2+2y2+2z2+2yz=2⇔3x2+2y2+2z2+2yz=2
⇒2≥3x2+2y2+2z2+y2+z2⇒2≥3x2+2y2+2z2+y2+z2
⇔2≥3(x2+y2+z2)⇔2≥3(x2+y2+z2)
Có: (x+y+z)2≤3(x2+y2+z2)≤2(x+y+z)2≤3(x2+y2+z2)≤2
⇒⇒A2≤2A2≤2 ⇔A∈[−√2;√2]⇔A∈[−2;2]
minA=-1⇔⇔{x+y+z=−√2x=y=z{x+y+z=−2x=y=z ⇒x=y=z=−√23⇒x=y=z=−23
maxA=1⇔{x+y+z=√2x=y=z⇔{x+y+z=2x=y=z ⇒x=y=z=√23
Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :
Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath
Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!
B1:
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=2+\frac{x}{y}+\frac{y}{x}\)
Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
Thật vậy !!!
\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)
\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)
\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)
\(\Leftrightarrow2x^2-5xy+2y^2\le0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )
Dấu "=" xảy ra tại \(x=1;y=2\)
Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)
lộn 3/2x^2 nha
ngonhuminhNhã DoanhMến Vũnguyen thi vangPhạm Nguyễn Tất ĐạtGia Hân Ngôlê thị hương giang