Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(A=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
\(=a.\frac{a}{b+c}+b.\frac{b}{c+a}+c.\frac{c}{a+b}\)
\(=a.\left(\frac{a}{b+c}+1-1\right)+b.\left(\frac{b}{c+a}+1-1\right)+c.\left(\frac{c}{a+b}+1-1\right)\)
\(=a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{c+a}-b+c.\frac{a+b+c}{a+b}-c\)
\(=\left(a+b+c\right).\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)
\(=\left(a+b+c\right).2020-\left(a+b+c\right)\)
\(\Rightarrow P=\frac{A}{a+b+c}=\frac{\left(a+b+c\right).2019}{a+b+c}=2019\)
Vậy...
\(\frac{2}{ab}-9=\frac{1}{c^2}\)\(\Rightarrow\frac{2}{ab}-\frac{1}{c^2}=9\)
Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{2}{ab}-\frac{1}{c^2}\right)=3^2-9\)
\(\Rightarrow\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2.\frac{1}{a}.\frac{1}{b}+2.\frac{1}{b}.\frac{1}{c}+2.\frac{1}{c}.\frac{1}{a}-\frac{2}{ab}+\frac{1}{c^2}=0\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}-\frac{2}{ab}+\frac{1}{c^2}=0\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ac}+\frac{1}{c^2}=0\)
\(\Rightarrow\left(\frac{1}{a^2}+\frac{2}{ac}+\frac{1}{c^2}\right)+\left(\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}\right)=0\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{c}=0\\\frac{1}{b}+\frac{1}{c}=0\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{-1}{c}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)\(\Rightarrow\frac{-1}{c}+\frac{-1}{c}+\frac{1}{c}=3\)\(\Rightarrow\frac{-1}{c}=3\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=3\)\(\Rightarrow c=-\frac{1}{3}\)và\(a=b=\frac{1}{3}\)
Lại có: \(P=\left(a+3b+c\right)^{2020}=\left(\frac{1}{3}+3.\frac{1}{3}+\frac{-1}{3}\right)^{2020}=1^{2020}=1\)
Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)
=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)
=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)
=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)
=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)
Khi đó Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)
= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020
= 1 + 1 + 1 = 3
Vậy P = 3
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2+\frac{1}{a^2}}=2\\ \)(do Bđt cosi)=> \(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\\ \)
Dấu "=" xảy ra <=> a=b=c=1
=>B=3
Bất đẳng thức cosi mình chưa học