Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\sqrt{ab}\le a+b\le4\Rightarrow\sqrt{ab}\le2\Rightarrow ab\le4\Rightarrow\frac{1}{ab}\ge\frac{1}{4}\)
\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{16}{ab}+ab+\frac{17}{2ab}\)
\(P\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{16ab}{ab}}+\frac{17}{2}.\frac{1}{4}\ge\frac{4}{4^2}+\frac{81}{8}=\frac{83}{8}\)
\(\Rightarrow P_{min}=\frac{83}{8}\) khi \(a=b=2\)
BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\)
Còn dòng dưới đơn giản là tách \(\frac{25}{ab}=\frac{1}{2ab}+\frac{17}{2ab}+\frac{16}{ab}\) ra thôi bạn
ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)
ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)
thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)
ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)
\(\Leftrightarrow ab+bc+ca\ge3\)
thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)
mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)
từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)
vậy maxT=1 khi a=b=c=1
Ta có: \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=\sqrt{8\left(a^2+ab+2ab+2ac\right)}=2\cdot\sqrt{2\left(a+b\right)\left(a+2c\right)}\)
\(\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự\(\hept{\begin{cases}\sqrt{8b^2+56}\le2a+3b+2c\\\sqrt{4c^2+7}=\sqrt{4c^2+ab+2ac+2bc}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\end{cases}}\)
=> Q>2
Dấu "=" <=> \(\hept{\begin{cases}a=b=1\\c=1,5\end{cases}}\)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)
Bài 2:
Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)
Mà theo BĐT AM-GM và Bunhiacopxky:
\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)
\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)
Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)
\(P=\sum\frac{a^2}{b^2+c^2+bc}\ge\sum\frac{a^2}{b^2+c^2+\frac{b^2+c^2}{2}}=\frac{2}{3}\sum\frac{a^2}{b^2+c^2}\ge\frac{2}{3}.\frac{3}{2}=1\) (Nesbitt)
Hình như ko cần sử dụng điều kiện