
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(c^2=\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\frac{c^2}{a^2+b^2}\) (đpcm)
Nếu làm như kia thì fải là nhỏ hơn hoặc bằng chứ
Nhân chia đổi chiều mà

đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc

Theo BĐT Bunhia ta có (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z
suy ra a/x=b/y=c/z

\(a,\left(2a+3\right)x-\left(2a+3\right)y+\left(2a+3\right)\)
\(=\left(2a+3\right)\left(x-y+1\right)\)
\(b,\left(4x-y\right)\left(a-1\right)-\left(y-4x\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1\right)+\left(4x-y\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)
\(=\left(4x-y\right)\left(a-1+b-1+1-c\right)\)
\(=\left(4x-y\right)\left(a+b-c-1\right)\)
\(c,x^k+1-x^k-1\)
\(=0?!?!\)
\(d,x^m+3-x^m+1\)
\(=4\)
\(e,3\left(x-y\right)^3-2\left(x-y\right)^2\)
\(=\left(x-y\right)^2\left(3\left(x-y\right)-2\right)\)
\(=\left(x-y\right)^2\left(3x-3y-2\right)\)
\(f,81a^2+18a+1\)
\(=\left(9a\right)^2+2.9a+1\)
\(=\left(9a+1\right)^2\)
\(g,25a^2.b^2-16c^2\)
\(=\left(5ab\right)^2-\left(4c\right)^2\)
\(=\left(5ab+4c\right)\left(5ab-4c\right)\)
\(h,\left(a-b\right)^2-2\left(a-b\right)c+c^2\)
\(=\left(a-b-c\right)^2\)
\(i,\left(ax+by\right)^2-\left(ax-by\right)^2\)
\(=\left(ax+by-ax+by\right)\left(ax+by+ax-by\right)\)
\(=2by.2ax\)
\(=4axby\)

Đây là bất đăngt thức Bunyakovsky.
Chứng minh:
(a2+b2) (x2+y2)>=(ax+by)2
\(\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ax+by\right)^2\ge0\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2axby-b^2y^2\ge0\)
\(\Leftrightarrow a^2y^2-2aybx+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)
BĐT này luôn đúng, ta có điều phải chứng minh