K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
Nguyễn Việt Lâm
Giáo viên
5 tháng 3 2022
Ta có:
\(\dfrac{1}{a+3b}+\dfrac{1}{c+3}\ge\dfrac{4}{a+3b+c+3}=\dfrac{4}{2b+6}=\dfrac{2}{b+3}\)
Tương tự:
\(\dfrac{1}{b+3c}+\dfrac{1}{a+3}\ge\dfrac{2}{c+3}\)
\(\dfrac{1}{c+3a}+\dfrac{1}{b+3}\ge\dfrac{2}{a+3}\)
Cộng vế:
\(\sum\dfrac{1}{a+3b}+\sum\dfrac{1}{a+3}\ge\sum\dfrac{2}{a+3}\)
\(\Rightarrow\sum\dfrac{1}{a+3b}\ge\sum\dfrac{1}{a+3}\) (đpcm)
HF
20 tháng 10 2019
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
T
0
Lời giải:
Ta có: \(a^3+b^3=2\Leftrightarrow (a+b)(a^2-ab+b^2)=2>0\)
Mà \(a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0\), do đó \(a+b>0\)
Xét hiệu:
\(4(a^3+b^3)-(a+b)^3=4(a^3+b^3)-(a^3+3a^2b+3ab^2+b^3)\)
\(=3(a^3+b^3-a^2b-ab^2)\)
\(=3[a^2(a-b)-b^2(a-b)]=3(a^2-b^2)(a-b)=3(a+b)(a-b)^2\)
Do \(a+b>0\Rightarrow 3(a+b)(a-b)^2\geq 0\Rightarrow 4(a^3+b^3)-(a+b)^3\geq 0\)
\(\Rightarrow 4(a^3+b^3)\geq (a+b)^3\Leftrightarrow (a+b)^3\leq 8\)
\(\Leftrightarrow a+b\leq 2\)
Ta có đpcm.