K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 7 2020

Do \(\left\{{}\begin{matrix}a;b;c\ge1\\a+b+c=4>3\end{matrix}\right.\) \(\Rightarrow abc>1\)

\(\Rightarrow P=log_2abc\) đồng biến theo \(abc\Rightarrow P_{min}\) khi \(Q=abc\) đạt min

Đặt \(\left(a-1;b-1;c-1\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le1\\x+y+z=1\end{matrix}\right.\)

\(Q=\left(x+1\right)\left(y+1\right)\left(z+1\right)=1+xyz+x+y+z+xy+yz+zx\)

\(Q=2+xyz+xy+yz+zx\ge2+xy+yz+zx\ge2\)

\(\Rightarrow Q_{min}=2\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(1;1;2\right)\) và hoán vị

\(\Rightarrow P_{min}=log_22=1\) khi \(\left(a;b;c\right)=\left(1;1;2\right)\) và hoán vị

24 tháng 1 2017

Đáp án đúng : B

 

28 tháng 1 2019

Chọn  D.

DD
5 tháng 12 2020

\(4^{a+b-1}-\left(\frac{1}{2}\right)^{3a+b-2}+5a+3b-4=0\)

\(\Leftrightarrow2^{2a+2b-2}-2^{-3a-b+2}+5a+3b-4=0\)

\(\Leftrightarrow2^{2a+2b-2}+2b+2b-2=2^{-3a-b+2}-3a-b+2\)(1)

Xét hàm \(f\left(t\right)=2^t+t\)

\(f'\left(t\right)=2^t.ln\left(2\right)+1>0,\forall t\inℝ\)

suy ra \(f\left(t\right)\)đồng biến trên \(ℝ\).

(1) suy ra \(2a+2b-2=-3a-b+2\Leftrightarrow b=\frac{4-5a}{3}\)

\(P=a^2+2ab+b^2=\left(a+b\right)^2=\left(a+\frac{4-5a}{3}\right)^2\ge0\)

Dấu \(=\)khi \(a=2\).

Vậy \(minP=0\)khi \(a=2,b=-2\) 

30 tháng 3 2017

Đáp án B

15 tháng 1 2018

Đáp án B

22 tháng 2 2017

8 tháng 3 2018

25 tháng 5 2023

Theo giả thiết kết hợp sử dụng BĐT AM - GM có:

\(\left(a+b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-\left[c\left(a+b\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)

\(\le\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-2\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}=\left[\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\right]^2\)

Suy ra \(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\ge2\Leftrightarrow\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}\ge3\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge7\)

Khi đó, sử dụng BĐT Cauchy - Schwarz ta có:

\(\left(a^4+b^4+c^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\ge\left[\sqrt{\left(a^4+b^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}\right)}+1\right]^2\)

\(=\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+1\right)^2=\left[\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-1\right]^2\ge\left(7^2-1\right)^2=2304\)

Đẳng thức xảy ra khi và chỉ khi \(ab=c^2\) và \(\dfrac{a}{b}+\dfrac{b}{a}=7\)

(a+b-c)(1/a+1/b-c)=(a+b)(1/a+1/b)+1-[c(a+b)+c(1/a+1/b)]<=(a+b)(1/a+1/b)+1-2căn (a+b)(1/a+1/b)

=[(căn (a+b)(1/a+1/b))-1]^2

=>\(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1>=2\)

=>\(\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}>=3\)

=>a/b+b/a>=7

(a^4+b^4+c^4)(1/a^4+1/b^4+1/c^4)>=[căn ((a^4+b^4)(1/a^4+1/b^4))+1]^2

=(a^2/b^2+b^2/a^2+1)^2=[(a/b+b/a)^2-1]^2>=(7^2-1)^2=2304

=>ĐPCM

12 tháng 12 2017

Đáp án C.