K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2019

Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

a 2 + b 2 ≥ 2 a b ,   b 2 + c 2 ≥ 2 b c ,   c 2 + a 2 ≥ 2 c a  

Do đó:  2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9

Dấu bằng xảy ra khi  a = b = c = 3 . Vậy MinP= 9 khi  a = b = c = 3

Vì  a ,   b ,   c   ≥ 1 , nên  ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b

Tương tự ta có  b c + 1 ≥ b + c ,   c a + 1 ≥ c + a  

Do đó  a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6

Mà   P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18

⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Vậy maxP= 18 khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

4 tháng 5 2018

Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2

Theo Cauchy có: 

\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)

=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)

Hoặc:

P2= (a2+b2+c2)(b2+c2+a2

Theo Bunhiacopxki có:

P2= (a2+b2+c2)(b2+c2+a2\(\ge\)(ab+bc+ca)2=92

=> P\(\ge\)9  => Pmin=9

5 tháng 5 2018

Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)

\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)

\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)

Cộng từng vế của (1), (2) và (3) ta được: 

ab + bc + ca -2(a +b +c) + 3 \(\ge0\)

=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)

Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)

=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)

Vậy GTLN của P là 18 

Dâu "=" xảy ra khivà chỉ khi:

a =b=1, c=4 

hoặc: b=c=1, a=4

hoặc: c=a=1, b=4

NV
1 tháng 8 2021

\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Lại có:

\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)

\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)

\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)

Do đó:

\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)

\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)

\(Q^2\ge4\left(a+b+c\right)\ge4\)

\(\Rightarrow Q\ge2\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

1 tháng 8 2021

hàng đầu tiên tìm MaxQ áp dụng bđt nào thế thầy?

NV
31 tháng 1 2021

\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(P_{max}=12\) khi \(a=b=c=1\)

Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

\(\Rightarrow\sqrt{3}\le a+b+c\le3\)

\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)

\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)

\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị

22 tháng 6 2021

thế bạn bt hok

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

4 tháng 9 2021

Áp dụng BĐT Bunhiacopxki ta có: 

\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)

\(=3\left(2a+2b+2c\right)=3.2\left(a+b+c\right)=6.2021=12126\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{12126}\)

Dấu ''='' xảy ra khi \(a=b=c=\dfrac{2021}{3}\)

24 tháng 11 2017

fkfkbang14

NV
17 tháng 4 2022

\(Q=ac+bc-2022ab\le ac+bc=c\left(a+b\right)\le\dfrac{1}{4}\left(c+a+b\right)^2=\dfrac{1}{4}\)

\(Q_{max}=\dfrac{1}{4}\) khi \(\left\{{}\begin{matrix}a+b+c=1\\ab=0\\c=a+b\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;\dfrac{1}{2};\dfrac{1}{2}\right);\left(\dfrac{1}{2};0;\dfrac{1}{2}\right)\)

\(Q=c\left(a+b\right)-2022ab\ge c\left(a+b\right)-\dfrac{1011}{2}\left(a+b\right)^2\)

\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}\left(1-c\right)^2\)

\(Q\ge c\left(1-c\right)-\dfrac{1011}{2}c\left(c-2\right)-\dfrac{1011}{2}\)

\(Q\ge\dfrac{c\left(1011+1013\left(1-c\right)\right)}{2}-\dfrac{1011}{2}\ge-\dfrac{1011}{2}\)

\(Q_{min}=-\dfrac{1011}{2}\) khi \(\left(a;b;c\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\)

31 tháng 3 2022

\(P=2\Sigma a+\Sigma\dfrac{1}{a}=\Sigma a+\Sigma a+\Sigma\dfrac{1}{a}\ge3.\sqrt[3]{\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}}\)

\(Q=\left(\Sigma a\right)^2.\Sigma\dfrac{1}{a}=\left(3+2\Sigma ab\right).\Sigma\dfrac{1}{a}=3\Sigma\dfrac{1}{a}+4\Sigma a+2\Sigma\dfrac{ab}{c}\ge3\Sigma\dfrac{1}{a}+6\Sigma a=3\left(\Sigma\dfrac{1}{a}+2\Sigma a\right)=3P\)\(\Rightarrow\)\(P\ge3\sqrt[3]{3P}\)   \(\Leftrightarrow P^3\ge81P\Leftrightarrow P^2\ge81\left(P>0\right)\Leftrightarrow P\ge9\)

" = " \(\Leftrightarrow a=b=c=1\)

 

31 tháng 3 2022

Vì $\large a,b,c \in\mathbb{N^*}$ và $\large a^2+b^2+c^2=3\Rightarrow \left\{\begin{matrix} a<\sqrt{3} & \\ b<\sqrt{3} & \\ c<\sqrt{3} & \end{matrix}\right.$

Ta chứng minh bất đẳng thức phụ sau: 

Với $0 <x<\sqrt{3}$ thì $2x+\frac{1}{x} \ge x^2.\frac{1}{2}+\frac{5}{2}(*)$

Thật vậy $(*)$ $\large \Leftrightarrow (x-2)(x-1)^2 \le0$

Do $\large x<\sqrt{3}\Leftrightarrow x<2\Leftrightarrow (x-2)(x-1)^2<0$ (Luôn đúng)

Do đó bất đẳng thức được chứng minh 

Dấu $"="$ xảy ra khi $x=1$

Trở lại bài toán: 

Áp dụng BĐT $(*)$ ta được:

$\large 2a+\frac{1}{a}+2b+\frac{1}{b}+2c+\frac{1}{c}\ge\frac{1}{2}(a^2+b^2+c^2)+\frac{15}{2}=9$

Do $a^2+b^2+c^2=3$

Vậy $GTNN=9$

Dấu $"="$ xảy ra khi: $a=b=c=1$