K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

Akai Haruma em có cách khác:3 Cô check giúp em ạ.

Sử dụng nguyên lí Dirichlet ta có thể giả sử \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Rightarrow a^2b^2\ge a^2+b^2-1\)

Suy ra \(a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

Suy ra \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge\left[\left(2a\right)^2+\left(2b\right)^2+2^2+2^2\right]\left(1+1+1+c^2\right)\)

\(\ge\left(2a+2b+2c+2\right)^2=4\left(a+b+c+1\right)^2\) (Bunyakovski)

Đẳng thức xảy ra khi a = b = c = 1

Ngắn quá:))

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq (a+b+c+1)^2\)

\(\Leftrightarrow 4(a^2+3)[1+\frac{1}{3}(b+c+1)^2]\geq 4(a+b+c+1)^2\)

Để chứng minh được BĐT đã cho, ta chỉ cần chỉ ra:
\((b^2+3)(c^2+3)\geq 4[1+\frac{(b+c+1)^2}{3}]\)

\(\Leftrightarrow 3b^2c^2+5b^2+5c^2+11-8bc-8b-8c\geq 0\)

\(\Leftrightarrow 3(bc-1)^2+4(b-1)^2+4(c-1)^2+(b-c)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

25 tháng 6 2017

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

26 tháng 6 2017

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

27 tháng 4 2020

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\left(a+b+c+1\right)^2=\left(a.1+\sqrt{3}.\frac{b+c+1}{\sqrt{3}}\right)^2\le\left(a^2+3\right)\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)

Từ đó bài toán đưa về :

\(\left(b^2+3\right)\left(c^2+3\right)\ge4\left[1+\frac{\left(b+c+1\right)^2}{3}\right]\)

\(\Leftrightarrow b^2c^2+3b^2+3c^2+9\ge4+\frac{4}{3}\left(b^2+c^2+2bc+2b+2c+1\right)\)

\(\Leftrightarrow b^2c^2+\frac{5}{3}b^2+\frac{5}{3}c^2+\frac{11}{3}\ge\frac{8}{3}bc+\frac{8}{3}b+\frac{8}{3}c\)

\(\Leftrightarrow b^2c^2+1-2bc+\frac{b^2+c^2-2bc}{3}+\frac{4}{3}\left(b^2-2b+1\right)+\frac{4}{3}\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(bc-1\right)^2+\frac{\left(b-c\right)^2}{3}+\frac{4}{3}\left(b-1\right)^2+\frac{4}{3}\left(c-1\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra khi a = b = c = 1

Vậy ....

24 tháng 7 2023

Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)

\(\Rightarrow x+y+z\ge0\)

\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)

Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)

=> Đẳng thức (1) luôn đúng với mọi x

Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)

và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)

1 tháng 1 2021

giả sử \(a\ge b\ge c\ge0\)

Ta có: \(a+\frac{b}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-b^2\right)\ge0\Rightarrow a+\frac{b}{2}\ge\frac{a^2+ab+b^2}{a+b}\)

\(b+\frac{a}{2}-\frac{a^2+ab+b^2}{a+b}=\frac{1}{2}\left(ab-a^2\right)\le0\Rightarrow b+\frac{a}{2}\le\frac{a^2+ab+b^2}{a+b}\)

Tương tự: \(b+\frac{c}{2}\ge\frac{b^2+bc+c^2}{b+c}\ge c+\frac{b}{2};a+\frac{c}{2}\ge\frac{a^2+ac+c^2}{a+c}\ge c+\frac{a}{2}\)

Lại có:+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\ge\left(a-b\right)\left(b+\frac{a}{2}\right)+\left(b-c\right)\left(c+\frac{a}{2}\right)-\left(a-c\right)\left(a+\frac{c}{2}\right)\)

\(\ge\frac{-1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(1\right)\)

+) \(\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\)

\(=\left(a-b\right)\frac{a^2+ab+b^2}{a+b}+\left(b-c\right)\frac{b^2+bc+c^2}{b+c}-\left(a-c\right)\frac{a^2+ac+c^2}{a+c}\)

\(\le\left(a-b\right)\left(a+\frac{b}{2}\right)+\left(b-c\right)\left(b+\frac{c}{2}\right)-\left(a-c\right)\left(c+\frac{a}{2}\right)\)

\(\le\frac{1}{4}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(2\right)\)

Từ 1,2 => đpcm

2 tháng 1 2021

BĐT đã cho tuong duong voi:

\(\left|\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right|\le\frac{1}{4}\left[\Sigma\left(a-b\right)^2\right]\)

Theo AM-GM ta có: \(\left(ab+bc+ca\right)\le\frac{9}{8}\cdot\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a+b+c}\)

Có: \(VT\le\frac{9}{8}\left|\frac{\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{\left(a+b+c\right)}\right|=\frac{9\sqrt{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}{8\left(a+b+c\right)}\)

Cần chứng minh: \(4\left(a+b+c\right)^2\left[\Sigma\left(a-b\right)^2\right]^2\ge9\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\)

Rõ ràng \(\Sigma\left(a-b\right)^2\ge3\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Cần cm: \(36\left(a+b+c\right)^2\sqrt[3]{\left(a-b\right)^4\left(b-c\right)^4\left(c-a\right)^4}\ge9\sqrt[3]{\left(a-b\right)^6\left(b-c\right)^6\left(c-a\right)^6}\)

Hay \(4\left(a+b+c\right)^2\ge\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)

Tiếp tục là điều hiển nhiên do \(VT\ge4\left[\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\right]\)

\(=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

\(\ge6\sqrt[3]{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\ge VP\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\\a-b=b-c=c-a\\a=b=c\end{cases}}\Leftrightarrow a=b=c.\)

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
18 tháng 9 2021

\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)

Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)

\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)

Cộng vế:

\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)

NV
28 tháng 6 2021

Đề bài sai với \(a=b=c=2\)

28 tháng 6 2021

Có xóa luôn câu hỏi không ạ?

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)