K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

\(\left\{{}\begin{matrix}x+a+b+c=7\\x^2+a^2+b^2+c^2=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=7-x\\a^2+b^2+c^2=13-x^2\end{matrix}\right.\)

Mà ta có:

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

\(\Rightarrow13-x^2\ge\dfrac{\left(7-x\right)^2}{3}\)

\(\Leftrightarrow2x^2-7x+5\le0\)

\(\Leftrightarrow1\le x\le\dfrac{5}{2}\)

Vậy min là 1 khi \(\left\{{}\begin{matrix}x=1\\a=b=c=2\end{matrix}\right.\)

Max là \(\dfrac{5}{2}\) khi \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\a=b=c=\dfrac{3}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
16 tháng 2 2021

Lời giải:Vì $f(x)\geq 0$ nên $\Delta=b^2-4ac\leq 0$

$\Leftrightarrow 4ac\geq b^2$

Áp dụng BĐT AM-GM:

$Q=\frac{4a+c}{b}\geq \frac{4\sqrt{ac}}{b}\geq \frac{4\sqrt{b^2}}{b}=\frac{4b}{b}=4$

Vậy $Q_{\min}=4$

NV
8 tháng 4 2021

\(\left(a^3+b^2+c\right)\left(\dfrac{1}{a}+1+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\dfrac{a^3+b^2+c}{a}\ge\dfrac{\left(a+b+c\right)^2}{1+a+ac}=\dfrac{9}{1+a+ac}\)

\(\Rightarrow\dfrac{a}{a^3+b^2+c}\le\dfrac{1+a+ac}{9}\)

Tương tự: \(\dfrac{b}{b^3+c^2+a}\le\dfrac{1+b+ab}{9}\)\(\dfrac{c}{c^3+a^2+b}\le\dfrac{1+c+bc}{9}\)

Cộng vế:

\(P\le\dfrac{3+a+b+c+ab+bc+ca}{9}\le\dfrac{6+\dfrac{1}{3}\left(a+b+c\right)^3}{9}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
21 tháng 4 2021

\(f\left(x\right)\ge0\) ;\(\forall x\in R\)

\(\Leftrightarrow\Delta'=4b^2-ac\le0\)

\(\Leftrightarrow ac\ge4b^2\Rightarrow\sqrt{ac}\ge2b\)

\(F=\dfrac{a+c}{b}\ge\dfrac{2\sqrt{ac}}{b}\ge\dfrac{2.2b}{b}=4\)

\(F_{min}=4\) khi \(a=c=2b\)

27 tháng 6 2021

b, Ta có : \(0\le x\le1\)

\(\Rightarrow-2\le x-2\le-1< 0\)

Ta có : \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left(2-x\right)}\)

\(=2\left(m-1\right)x-m< 0\)

TH1 : \(m=1\) \(\Leftrightarrow m>0\)

TH2 : \(m\ne1\) \(\Leftrightarrow x< \dfrac{m}{2\left(m-1\right)}\)

\(0\le x\le1\)

\(\Rightarrow\dfrac{m}{2\left(m-1\right)}>1\)

\(\Leftrightarrow\dfrac{m-2\left(m-1\right)}{2\left(m-1\right)}>0\)

\(\Leftrightarrow\dfrac{2-m}{m-1}>0\)

\(\Leftrightarrow1< m< 2\)

Kết hợp TH1 => m > 0

Vậy ...
 

27 tháng 6 2021

\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\)

Để pt có hai nghiệm thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2=2\left(m-1\right)\le4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-2\right)\left(m+2\right)\ge0\\m\le3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\in\left[-2;0\right]\cup\left(2;+\infty\right)\cup\left\{2\right\}\\m\le3\end{matrix}\right.\)\(\Rightarrow m\in\left[-2;0\right]\cup\left[2;3\right]\)

\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)

\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_1\left(x_1+x_2\right)+8x_1x_2\)

\(=8\left(m-1\right)^3+8\left(-m^3+m^2+2m+1\right)\)

\(=-16m^2+40m\)

Vẽ BBT với \(f\left(m\right)=-16m^2+40m\) ;\(m\in\left[-2;0\right]\cup\left[2;3\right]\)

Tìm được \(f\left(m\right)_{min}=-144\Leftrightarrow m=-2\)

\(f\left(m\right)_{max}=16\Leftrightarrow m=2\)

\(\Rightarrow P_{max}=16;P_{min}=-144\)

Vậy....

2 tháng 1 2022

Ta có \(a^2+\dfrac{1}{b+c}=a^2+\dfrac{1}{6-a}\)

Mà \(a+b+c=6\Rightarrow0\le a,b,c\le2\)

\(\Rightarrow a^2+\dfrac{1}{6-a}\ge2^2+\dfrac{1}{6-2}=\dfrac{17}{4}\)

\(\Rightarrow P=\sum\sqrt{a^2+\dfrac{1}{b+c}}=\sum\sqrt{a^2+\dfrac{1}{6-a}}\ge\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}=\dfrac{3\sqrt{17}}{2}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

2 tháng 1 2022

a + b + c >= 6 chứ có phải a + b + c = 6 đâu ạ?

\(C^1_n+C^2_n=15\)

=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)

=>\(n+\dfrac{n^2-n}{2}=15\)

=>2n+n^2-n=30

=>n^2+n-30=0

=>n=5

=>(x+2/x^4)^5

SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)

SỐ hạng ko chứa x tương ứng với 5-5k=0

=>k=1

=>Số hạng đó là 5*2=10