K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

Chọn đáp án B.

Phương pháp: Tìm tập hợp các điểm biểu diễn số phức z thỏa mãn hệ thức cho trước

+ Đặt 

+ Chuyển hệ thức với z về hệ thức với a, b, rút gọn để tìm hệ thức liên hệ giữa a và b

Phương trình (đường thẳng, đường tròn) cần tìm. 

Cách giải 

Giả sử . Ta có

 

22 tháng 12 2017

Đáp án C

Đặt 

Đặt  Số phức w được biểu diễn bởi điểm M(x';y')

Em có: 

Em có: 

Mà x = 3y + 2 nên w = 

Vậy số phức w được biểu diễn bởi đoạn thẳng: x + 7y + 9 = 0

14 tháng 3 2018

11 tháng 8 2018



8 tháng 7 2018

Đáp án C

Đặt Số phức w được biểu diễn bởi điểm M  (x;y).

Ta có: 

=> |z| = 

Vậy số phức w được biểu diễn bởi đường tròn tâm I  (0;1), bán kính R = 20 và có phương trình: 

26 tháng 7 2017

Đáp án C.

13 tháng 6 2018

Chọn B

Phương trình (S): xy+ z+ 4x - 6y + m = 0 là phương trình mặt cầu <=> m < 13

Khi đó (S) có tọa độ tâm I (-2;3;0) bán kính 

Gọi M (x;y;z) là điểm bất kỳ thuộc Δ.

Tọa độ M thỏa mãn hệ: 

Đặt y = t ta có: 

=> Δ có phương trình tham số: 

Δ đi qua điểm N (-2; 0; -3) và có vectơ chỉ phương 

 

Giả sử mặt cầu (S) cắt Δ tại hai điểm phân biệt A, B sao cho AB = 8Gọi (C) là đường tròn lớn chứa đường thẳng ΔKhi đó ICR- AC= 13 - m - 4= -m - 3

N (0;-3;-3)

Vậy mặt cầu (S) cắt Δ tại hai điểm phân biệt A, B sao cho AB = 8

<=> -m - 3 = 9 <=> m = -12

3 tháng 11 2017

Đáp án C.

NV
12 tháng 4 2019

Bài này chỉ nên làm theo kiểu trắc nghiệm, không bao giờ nên giải tự luận vì theo mình thì nó quá là trâu :(

Trắc nghiệm thì ta có sẵn 4 mặt phẳng rồi, gọi mặt phẳng đó là (P) thì \(AB\perp\left(P\right)\Rightarrow AM\perp\left(P\right)\Rightarrow\) phương trình \(\Delta'\) chính là phương trình đường thẳng qua M và \(\perp\left(P\right)\Rightarrow\) nhận vtpt của (P) là 1 vtcp \(\Rightarrow\) dễ dàng viết được 4 pt đường thẳng \(\Delta'\) chỉ sau 5s

Đường thẳng này trước hết phải cắt \(\Delta\) nên ta tìm giao điểm của \(\Delta'\)\(\Delta\), pt nào ko cho giao điểm \(\Rightarrow\) loại ngay, nếu có giao điểm thì tìm tiếp giao điểm của \(\Delta'\) với mặt cầu và xem hoành độ có nguyên ko, nguyên \(\Rightarrow\) kiểm tra tỉ lệ khoảng cách, ko nguyên \(\Rightarrow\) loại.

Còn tự luận thì ý tưởng của mình thế này, nhưng chắc phải làm cả tiếng đồng hồ mất:

Chia làm 2 trường hợp: \(\overrightarrow{AB}=3\overrightarrow{AM}\)\(\overrightarrow{AB}=-3\overrightarrow{AM}\), nếu hên sẽ đúng luôn ngay từ trường hợp đầu tiên :D

Gọi \(A\left(a+3;-a-1;a-2\right)\Rightarrow\) từ tỉ lệ vecto suy ra tọa độ B có 3 yếu tố phụ thuộc vào \(a\), thay tọa độ đó vào pt mặt cầu \(\Rightarrow\) cái nào có hoành độ nguyên thì nhận

- Tìm được tọa độ B \(\Rightarrow\) tọa độ A \(\Rightarrow\) viết pt trung trực

12 tháng 4 2019

Cảm ơn bạn, mình giải được rồi ạ.