Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi M(x;y) là điểm biều diễn số phức z.
Từ giả thiết, ta có |z - 4 - 3i| = 5
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R = 5
Khi đó P = MA + MB với A(-1;3), B(1;-1)
Ta có
Gọi E(0;1) là trung điểm của AB
Do đó mà suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C)
Vậy Dấu “=”xảy ra
Đáp án A.
Gọi M(x;y) là điểm biểu diễn số phức z.
Từ giả thiết, ta có
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R = 5
Khi đó P = MA + MB, với A(-1;3), B(1;-1)
Ta có
Gọi E(0;1) là trung điểm của AB
Do đó mà
suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C).
Vậy Dấu “=” xảy ra
=> a + b = 10
Đáp án A.
Gọi M(x;y) là điểm biểu diễn số phức z.
Từ giả thiết, ta có
=> M thuộc đường tròn (C) tâm I(4;3), bán kính R =
5
. Khi đó P = MA + MB, với A(-1;3), B(1;-1)
Ta có:
Gọi E(0;1) là trung điểm của AB
Do đó mà suy ra
Với C là giao điểm của đường thẳng EI với đường tròn (C).
Vậy Dấu “=” xảy ra
\(z=x+yi\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2=x^2+y^2\)
\(\Rightarrow x+y+1=0\Rightarrow\) tập hợp z là đường thẳng d: \(x+y+1=0\)
\(P=\left|\left(z-4-5i\right)-\left(w-3-4i\right)\right|\ge\left|\left|z-4-5i\right|-\left|w-3-4i\right|\right|=\left|\left|z-4-5i\right|-1\right|\)
Gọi M là điểm biểu diễn z và \(A\left(4;5\right)\Rightarrow\left|z-4-5i\right|=AM\)
\(AM_{min}=d\left(A;d\right)=\dfrac{\left|4+5+1\right|}{\sqrt{1^2+1^2}}=5\sqrt{2}\)
\(\Rightarrow P\ge\left|5\sqrt{2}-1\right|=5\sqrt{2}-1\)
Đáp án A.
Phương pháp:
Từ tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z=x+yi
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có:
nhỏ nhất
Cách giải: Gọi z=x+ui ta có:
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có:
nhỏ nhất.
Ta có:
Dấu bằng xảy ra
M thuộc trung trực của AB.
Gọi I là trung điểm của AB ta có
Phương trình đường trung trực của AB là
Để
Tọa độ điểm M là nghiệm của hệ phương trình
Đáp án D
Cách 1
· Đặt biểu diễn cho số phức z.
· Từ giả thiết, ta có M thuộc đường trung trực của đoạn EF và P=AM+BM+CM
· Ta chứng minh điểm M chính là hình chiếu vuông góc của B lên đường thẳng ∆ .
- Với M’ tùy ý thuộc ∆ , M’ khác M. Gọi A’ là điểm đối xứng của A qua ∆ . Nhận thấy rằng ba điểm A’, M, C thẳng hàng.
- Ta có
Mà
Lại có Do đó
Cách 2
· Gọi Từ giả thiết , dẫn đến y=x .
Khi đó z=x+xi.
·
· Sử dụng bất đẳng thức
Dấu đẳng thức xảy ra khi và chỉ khi . Ta có
Dấu đẳng thức xảy ra khi và chỉ khi
· Mặt khác
Dấu đẳng thức xảy ra khi và chỉ khi x= 7 2
· Từ hai trường hợp trên, ta thấy, giá trị nhỏ nhất của P là .
Khi đó a+b=3.
Đáp án D.
Đặt z = a + bi => a + bi
Do |z| > 1 => a = 3, b = 4