Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhyaxcopki, ta có:
\(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(\dfrac{3}{2}\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\dfrac{9}{4}\)
\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{3}{4}\)
ủng hộ cách khác không xài bđt bunhia:
\(x^2+y^2+z^2\ge\dfrac{3}{4}\)
\(\Leftrightarrow x^2+y^2+z^2-x-y-z\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)
\(\Leftrightarrow x^2+y^2+z^2-x-y-z+\dfrac{3}{4}\ge0\)
\(\Leftrightarrow\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2-y+\dfrac{1}{4}\right)+\left(z^2-z+\dfrac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)(luôn đúng \(\forall x+y+z=\dfrac{3}{2}\))
\(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\\c=\dfrac{1}{z}\end{matrix}\right.\) \(\Leftrightarrow\begin{matrix}a+b+c=1\\a^4+b^4+c^4\ge abc\end{matrix}\) \(x,y,z\ne0\Rightarrow a,b,c\ne0\)
\(a^2+b^2+x^2\ge ab+bc+ac\) (*){cơ bản} \(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\ge\left(ab.ac\right)+\left(ab.bc\right)+\left(ac.bc\right)=abc\left(a+b+c\right)=abc\)
(*) bình phương hai vế
\(\Leftrightarrow a^4+b^4+c^4+2\left(ab\right)^2+2\left(ac\right)^2+2\left(bc\right)^2\ge\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge-\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]+2abc\ge-abc+2abc=abc=>dpcm\)Đẳng thức:
a=b=c=1/3=> x=y=z=3
ta co \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) \(\Rightarrow\) \(\dfrac{1}{x.x}+\dfrac{1}{y.y}+\dfrac{1}{z.z}=1\)
\(\Rightarrow\dfrac{1}{x.x.x}+\dfrac{1}{y.y.y}+\dfrac{1}{z.z.z}=1\)\(\Rightarrow\dfrac{1}{x.x.x.x}+\dfrac{1}{y.y.y.y}+\dfrac{1}{z.z.z.z}=1\Leftrightarrow\dfrac{1}{x^4}+\dfrac{1^{ }}{y^4}+\dfrac{1}{z^4}=1\)
\(\Rightarrow\)\(\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{z^4}\)>= \(\dfrac{1}{x.y.z}\)
Lời giải:
Ta có:
\(A=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}=\frac{1}{x(x+1)}+\frac{1}{y(y+1)}+\frac{1}{z(z+1)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{y}-\frac{1}{y+1}+\frac{1}{z}-\frac{1}{z+1}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)(1)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x}+\frac{1}{1}\geq \frac{4}{x+1}\) và tương tự với các phân thức còn lại rồi cộng lại:
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\geq 4\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\Leftrightarrow \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+3\right)(2)\)
Từ (1); (2) suy ra \(A\geq \frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\right)\)
Mà theo BĐT Cauchy- Schwarz ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}=\frac{9}{3}=3\)
Do đó: \(A\geq \frac{3}{4}(3-1)=\frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
2) \(x^4-x^2+2x+2\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1+2\right)\left(x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(=\left(x^2+x\right)^2\)
Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D