K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021
Toán thế lày thì e chịu
25 tháng 2 2021

Ta có x+y=z+t 

=>y=z+t-x

=>x(z+t-x)=zt-1

=>xz+xt-x2=zt-1

=>x(z-x)=zt-xt-1

=>x(z-x)=t(z-x)-1

=>t(z-x)-x(z-x)=1

=>(t-x)(z-x)=1

TH1:

t-x=z-x=1(x;y;z;t E N sao)

=>z=t(vì =x+1)(đpcm)

TH2:

t-x=z-x=-1(vì x;y;z;t E N sao)

=>z=t(vì =x-1)(đpcm)

Vậy z=t

cho xin cảm ơn

15 tháng 2 2019

có đk gì về a ko?

15 tháng 2 2019

\(a\in Z\) nhé.

Tớ viết đề thiếu:))

14 tháng 1 2017

\(\hept{\begin{cases}xy=a\\x+y=b\end{cases}\Rightarrow x\left(b-x\right)=a\Leftrightarrow-x^2+bx=a\Leftrightarrow x^2-bx+\frac{b^2}{4}=\frac{b^2}{4}-a}\)

\(\Leftrightarrow\left(x-\frac{b}{2}\right)^2=\left(\frac{b^2}{4}-a\right)=\frac{b^2-4a}{4}\)

có nghiệm \(\Rightarrow b^2-4a\ge0\)

\(\hept{\begin{cases}x=\frac{b-\sqrt{b^2-4a}}{2}\\x=\frac{b+\sqrt{b^2-4a}}{2}\end{cases}}\)

Nghiệm nguyên \(b^2-4a=n^2.b^2\) Với n phải là số lẻ Đảm khi cộng(+) trừ(-) b ra số chẵn

\(\left(z+t\right)^2-4\left(xt\right)+4=n^2\left(z+t\right)^2\)

\(\left(z-t\right)^2+4=n^2\left(z+t\right)^2\)

\(\Leftrightarrow\left[n\left(z+t\right)\right]^2-\left(z-t\right)^2=4\)

Hiệu hai số CP =4 duy nhất có 4 và 0

\(\hept{\begin{cases}\left(z-t\right)^2=0\Rightarrow z=t\\\left[n\left(z+t\right)\right]^2=4\end{cases}}\Rightarrow dpcm\)

12 tháng 1 2020

Ta có:x2 + z2 = y2 + t2
Xét P = (x2 + z2 + y2 + t2) - (x + z + y + t)
          = (x2 - x) + (z2 - z) + (y2 - y) + (t2 - t)
          = x(x - 1) + z(z -1) + y(y -1) + t(t -1) chia hết cho 2
 (Vì tích của 2 số nguyên liên tiếp luôn chia hết cho 2)
Thay x2 + z2 = y2 + t2 vào P ta được:
P = 2(x2 + z2) - (x + y + z + t) chia hết cho 2
Mà 2(x2 + z2) chia hết cho 2 
=>x + y +z + t chia hết cho 2
Vì x,y,z,t nguyên dương nên x + y + z + t > 2
Suy ra x + y + z + t là hợp số
Chúc bn hc tốt
Chúc bn ăn Tết vui vẻ