Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a< b\\c< d\\e< f\end{cases}}\Rightarrow a+c+e< b+d+f\)
\(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)
=> dpcm
Cho các số nguyên dương : a<bc<d<e<f.
Chứng minh rằng: \(\frac{a+c+e}{a+b+c+d+e+f}\) <\(\frac{1}{2}\)
d= d* 1
= d* (af- be)
= daf- dbe
= daf- bcf+ bcf- dbe
= f (ad- bc)+b (cf- de)
Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1
=> f(ad- be)+ b(cf- de) >= f + b
<=> d >= b+f (đpcm)
Lời giải:
Với $a,b,c,d,e,f\in\mathbb{Z}^+$ ta có:
$\frac{a}{b}>\frac{c}{d}\Rightarrow ad>bc\Leftrightarrow ad-bc>0$
Mà $ad,bc$ đều nguyên nên từ đây suy ra $ad-bc\geq 1(*)$
Tương tự:
$\frac{c}{d}>\frac{e}{f}\Rightarrow cf-ed\geq 1(**)$
Từ $(*); (**)$ suy ra:
$d=d(af-be)=daf-dbe=(daf-bcf)+(bcf-dbe)$
$=f(ad-bc)+b(cf-ed)\geq f.1+b.1$
Hay $d\geq b+f$ (đpcm)
Ta có: a < b => 2a < a + b (1)
c < d => 2c < c + d (2)
e < f => 2e < e + f (3)
Cộng ba vế (1),(2),(3) lại ta được:
2a + 2c + 2e < a + b + c + d + e + f
=> 2(a + c + e) < a + b + c + d + e + f
=> \(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\) (đpcm)