K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 11 2020

Lời giải:

Với $a,b,c,d,e,f\in\mathbb{Z}^+$ ta có:

$\frac{a}{b}>\frac{c}{d}\Rightarrow ad>bc\Leftrightarrow ad-bc>0$

Mà $ad,bc$ đều nguyên nên từ đây suy ra $ad-bc\geq 1(*)$

Tương tự:

$\frac{c}{d}>\frac{e}{f}\Rightarrow cf-ed\geq 1(**)$

Từ $(*); (**)$ suy ra:

$d=d(af-be)=daf-dbe=(daf-bcf)+(bcf-dbe)$

$=f(ad-bc)+b(cf-ed)\geq f.1+b.1$

Hay $d\geq b+f$ (đpcm)

25 tháng 11 2020

Em cảm ơn chị !

3 tháng 4 2017

d= d* 1

= d* (af- be)

= daf- dbe

= daf- bcf+ bcf- dbe 

= f (ad- bc)+b (cf- de)

Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1

=> f(ad- be)+ b(cf- de) >= f + b

<=> d >= b+f (đpcm)

22 tháng 3 2017

bó tay . com

6 tháng 6 2020

mn giúp nhưng khó quá  -.-

18 tháng 6 2017

Ta có: a < b => 2a < a + b       (1)

          c < d => 2c < c + d     (2)

          e < f => 2e < e + f      (3)

Cộng ba vế (1),(2),(3) lại ta được:

2a + 2c + 2e < a + b + c + d + e + f

=> 2(a + c + e)  < a + b + c + d + e + f

=> \(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\) (đpcm)

14 tháng 6 2019

\(\hept{\begin{cases}a< b\\c< d\\e< f\end{cases}}\Rightarrow a+c+e< b+d+f\)

                   \(\Rightarrow2\left(a+c+e\right)< a+b+c+d+e+f\)

                 => dpcm

14 tháng 6 2019

Ta có : \(a< b< c< d< e< f\)nên :

\(a+b+c+d+e+f>a+a+c+c+e+e=2\left(a+c+e\right)\)

\(\Rightarrow\frac{a+c+e}{a+b+c+d+e+f}< \frac{a+c+e}{2\left(a+c+e\right)}=\frac{1}{2}\left(đpcm\right).\)