Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Bài làm:
Ta có: \(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\)
\(=\frac{3}{b+c}+\frac{a^2}{b+c}+\frac{3}{c+a}+\frac{b^2}{c+a}+\frac{3}{a+b}+\frac{c^2}{a+b}\)
\(=3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)
Áp dụng bất đẳng thức Cauchy Schwars ta được:
\(VT\ge3.\frac{\left(1+1+1\right)^2}{a+b+b+c+c+a}+\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}\)
\(=3.\frac{9}{2\left(a+b+c\right)}+\frac{3^2}{2\left(a+b+c\right)}\)
\(=3.\frac{9}{2.3}+\frac{9}{2.3}=\frac{9}{2}+\frac{9}{6}=6\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
a,b,c là số nguyên,do đó: \(a^3+b^3+c^3⋮9\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮9\)
Ta có: \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮3\Leftrightarrow\left(a+b+c\right)⋮3\)
\(\Leftrightarrow\left(a+b+c\right)^3⋮9\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮3\)
Từ đó suy ra tồn tại 2 trong 3 số có tổng chia hết cho 3, suy ra số còn lại cũng chia hết cho 3
Vậy \(abc⋮3\)
Ta có:
\(a^3+b^3+c^3-a-b-c=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c-1\right)⋮3\)
mà \(a^3+b^3+c^3⋮9\Rightarrow a^3+b^3+c^3⋮3\)
=> \(a+b+c⋮3\)
Do đó: \(a^3+b^3+c^3-3\left(abc\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b+c\right)\right]\)\(⋮9\)
=> \(3abc⋮9\)=> \(abc⋮3\)
Hằng đẳng thức quen thuộc: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=\frac{a^3+b^3+c^3-3abc}{6}\)
khi đó \(vT=\frac{a^3+b^3+c^3-3abc}{6}+abc=\frac{a^3+b^3+c^3+3abc}{6}\)
Cần chứng minh \(a^3+b^3+c^3+3abc\ge48\)
ta có: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=216-3\left(6-a\right)\left(6-b\right)\left(6-c\right)\)
\(=216-18\left(ab+bc+ca\right)+3abc\)
do đó \(VT=216-18\left(ab+bc+ca\right)+6abc\)(*)
ta có bất đẳng thức phụ sau : với a,b,c là 3 cạnh của 1 tam giác thì \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
# : cách CM: dùng AM-GM lên google mà surt
ÁP dụng :\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=\left(6-2a\right)\left(6-2b\right)\left(6-2c\right)\)
\(abc\ge24\left(ab+bc+ca\right)-8abc-216\)\(\Leftrightarrow9abc\ge24\left(ab+bc+ca\right)-216\)
\(\Leftrightarrow6abc\ge16\left(ab+bc+ca\right)-144\)(**)
từ (*) và (**) ta có: \(VT\ge72-2\left(ab+bc+ca\right)\ge72-2.\frac{1}{3}\left(a+b+c\right)^2\)(AM-GM)
\(\Leftrightarrow VT\Rightarrow72-\frac{2}{3}.36=48\)(đpcm)
Dấu = xảy ra khi a=b=c=2
Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)
LG
Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)
\(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)
Khi đó :\(B=a+b+c+\frac{1}{abc}\)
\(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)
\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)
\(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)
Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Vậy .........
2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)
Áp dụng BĐT AM-GM ta có:
\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)
\(A\ge a+b+c-\frac{6}{2}\)
\(A\ge6-3\)
\(A\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)
\(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)
\(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)
Lấy \(\left(1\right)-\left(3\right)\)ta có:
\(2a-2c=c+b-a-b=c-a\)
\(\Rightarrow2a-2c-c+a=0\)
\(\Leftrightarrow3.\left(a-c\right)=0\)
\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)
Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)
\(\Rightarrow a=b=c=2\)
Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)
(a+b+c)^3= a^3+b^3 +c^3 +3abc( a+b+c)
= a^3 +b^3 +c^3 + 3(a+b+c)
Th1 nếu a+b+c=0
thì a^3 + b^3 +c^3 = a+b+c
TH2 a+b+c>0
thì a^3 +b^3 +c^3 > a+b+c
1/ \(4\left(a^2-ab+b^2\right)⋮3\)
\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮3\)
\(\Rightarrow2a-b⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮9\)
\(\Rightarrow3b^2⋮9\)
\(\Rightarrow b⋮3\)
\(\Rightarrow a⋮3\)