Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(ab=c\left(a-b\right)\)
<=> \(c^2=ac-bc-ab+c^2\)
<=> \(c^2=a\left(c-b\right)+c\left(c-b\right)\)
<=> \(c^2=\left(c-b\right)\left(a+c\right)\)
Đặt: ( c - b ; a + c ) = d
=> \(c^2⋮d^2\)=> \(c⋮d\)(1)
và \(\hept{\begin{cases}c-b⋮d\\a+c⋮d\end{cases}}\)(2)
Từ (1); (2) => \(b;a⋮d\)(3)
Từ (1); (3) và (a; b ; c ) =1
=> d = 1 hay c - b; a + c nguyên tố cùng nhau
Mà \(\left(c-b\right)\left(a+c\right)=c^2\)là số chính phương
=> c - b ; a + c là 2 số chính phương
Khi đó tồn tại số nguyên dương u, v sao cho: \(c-b=u^2;a+c=v^2\)khi đó: \(c^2=u^2.v^2\)<=> c = uv ( vì c, u,, v nguyên dương )
Ta có: \(a-b=\left(a+c\right)+\left(c-b\right)-2c\)
\(=u^2+v^2-2uv=\left(u-v\right)^2\) là số chính phương.
Ta có: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Áp dụng TCDTSBN ta có :
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)-\left(a-c\right)}{x+y-z}=\frac{0}{x+y-z}=0\)
\(\Rightarrow\frac{a-b}{x}=0\Rightarrow a-b=0\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b-c}{y}=0\Rightarrow b-c=0\Rightarrow b=c\) (2)
\(\Rightarrow\frac{a-c}{z}=0\Rightarrow a-c=0\Rightarrow a=c\) (3)
Từ (1);(2) và (3) \(\Rightarrow a=b=c\) (đpcm)