\(a_1;a_2;a_3;...;a_{2017}\)sao cho :

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

Sử dụng kết quả sau: Với \(n\in\mathbb{N}\Rightarrow n^5-n\vdots 30\)

Chứng minh:

Ta có: \(n^5-n=n(n^4-1)=n(n-1)(n+1)(n^2+1)\)

Xét thấy \(n-1,n\) là hai số nguyên liên tiếp nên \(n(n-1)\vdots 2\)

\(\Rightarrow n^5-n\vdots 2(1)\)

Xét thấy \(n-1,n,n+1\) là ba số nguyên liên tiếp nên

\(n(n-1)(n+1)\vdots 3\)

\(\Rightarrow n^5-n\vdots 3(2)\)

Xét modulo của 5 cho $n$ :

+) \(n=5k\Rightarrow n^5-n=(5k)^2-(5k)\vdots 5\)

+) \(n=5k+1\Rightarrow n-1=5k\vdots 5\Rightarrow n^5-n\vdots 5\)

+) \(n=5k+2\Rightarrow n^2+1=(5k+2)^2+1=5(5k^2+4k+1)\vdots 5\)

\(\Rightarrow n^5-n\vdots 5\)

+) \(n=5k+3\Rightarrow n^2+1=(5k+3)^2+1=5(5k^2+6k+2)\vdots 5\)

\(\Rightarrow n^5-n\vdots 5\)

+) \(n=5k+4\Rightarrow n+1=5k+5\vdots 5\)

\(\Rightarrow n^5-n\vdots 5\)

Tóm lại trong mọi TH thì \(n^5-n\vdots 5(3)\)

Từ (1);(2);(3) và (2,3,5) là 3 số đôi một nguyên tố cùng nhau nên:

\(n^5-n\vdots (2.3.5=30)\)

--------------------------------

Quay trở tại bài toán. Áp dụng kết quả trên:

\(M-N=(a_1^5-a_1)+(a_2^5-a_2)+...+(a_{2017}^5-a_{2017})\vdots 30\)

Mà \(N\vdots 30\Rightarrow M\vdots 30\)

Vậy ta có đpcm.

29 tháng 5 2017

từ a1 tới a2012 đều có dạng an = \(\frac{\left(n+1\right)!}{n}\)

riêng a2013 = (n + 1)!

31 tháng 10 2019

\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)

\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)

31 tháng 12 2018

Ta có \(a_1\) là số lẻ\(\Rightarrow a_1^2\) là số lẻ

Tương tự:

\(a_2^2\) là số lẻ

...

\(a_{2018}^2\) là số lẻ

\(a^2_{2019}\)là số lẻ

Ta có tổng của 2018 số lẻ sẽ là một số chẵn

\(\Rightarrow a_1^2+a_2^2+a_3^2+...+a_{2018}^2\) là một số chẵn

\(a^2_{2019}\) là số lẻ

Vậy không tồn tại 2019 số \(a_1,a_2,a_3,...,a_{2019}\)nguyên lẻ thỏa mãn đẳng thức \(a_1^2+a_2^2+a_3^2+...+a_{2018}^2=a^2_{2019}\)