Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{c-a}{d-b}\)
Ta có: d > c > b > a >0 => d - b > c - a > 0
=> a + d > b + c.
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{c-a}{d-b}.\)
Lại có: \(d>c>b>a.\)
\(\Rightarrow d-b>a-c\)
\(\Rightarrow a+d>b+c\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có: \(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{c-a}{d-b}\)
Mà d>c>b>a\(\Rightarrow\)d-b>c-a⇒d+a>c+b⇒Điều cần chứng minh
Bài làm
Giả sử: \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow ad>bc\)
Cộng cả hai vế với ab, ta được
ad + ab > bc + ab
=> a( b + d ) > b( a + c )
\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow ad>bc\)
Cộng cả hai vế với dc, ta được:
ad + dc > bc + dc
=> d( a + c ) > c( b + d )
\(\Rightarrow\frac{a+c}{b+d}>\frac{c}{d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)( đpcm )
\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+ab< bc+ab\)\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+cd< bc+cd\)\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Có \(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (vì b, b + d > 0) (1)
Có \(ad< bc\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (vì b + d, d > 0) (2)
Từ (1)(2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
hơi khó nhưng hay k tớ câu trả lời sẽ hiện
ko biết