Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
d <5 và c < 4d => c < 4*5
=> c < 20
b < 3c => b < 3*20
=> b < 60
a < 2b => a < 2*60
=> a < 120
Do a, b, c, d nguyên nên a =< 119
=> GTLN của a là 119
Vì d<5
=>4d>20 hay c<20
=>3c<60 hay b<60
Vì b<60
=>2b<120 hay a<120
Vậy giá trị lớn nhất của a là 119
ta có: \(\frac{a}{b}=\frac{c}{d}\approx\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\approx\frac{a+b}{a-b}=\frac{c+d}{c-d}\approx\frac{a-b}{a+d}=\frac{c-d}{c+d}\)
Vậy.........................................
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
\(\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow a=5;b=15;c=20\)
Theo bài ra , ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và\(a+2b-3c=-20\)
Áp dụng tính chất của dãy tỉ số bằng nhau vào biểu thức ,ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
Từ trên \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=5\)
\(\Rightarrow\frac{a}{2}=5\Rightarrow a=10\)
\(\Rightarrow\frac{b}{3}=5\Rightarrow b=15\)
\(\Rightarrow\frac{c}{4}=5\Rightarrow c=20\)
Vậy \(a=10;b=15;c=20\)
tao chỉ làm bừa thôi , đúng thì đúng mà sai thì thôi đừng có tích sai cho tao :) cho t sủa lại cái đề nhé :)) sửa lại cái dấu < \(a\le2b:b\le3c:c\le4d:d\le5.\)
có Max của D là 5 dấu = xảy ra khi D=5
thay vào \(c\le4.5\Leftrightarrow c\le20\)
suy ra Max của C là 20 dấu = xảy ra khi C=20
thay vào \(b\le3c\Leftrightarrow b\le3.20\Leftrightarrow b\le60\)
Max của B là 60 dấu = xảy ra khi B = 60
thay vào : \(a\le2b\Leftrightarrow a\le2.60\Leftrightarrow a\le120\)
suy ra max của A là 120 :)) theo định lí six path of Pain
>>> Pain Thiên Đạo: ko sửa đề lung tung nhé
Tham khảo: ta có d< 5 => c< 4.5=20.
Lại theo gt b < 3c => b < 3.20 = 6c .
Lại tiếp ta có a < 2b => a < 2.60 = 120 .
Vậy Max a = 119
Nguồn: Aiko Aki