K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 giờ trước (21:19)

\(42 = 2 \cdot 3 \cdot 7\), ta cần chứng minh biểu thức chia hết cho 2, 3 và 7.


1. Chia hết cho 2:
Vì số mũ 49 lẻ nên:

\(x^{49} \equiv x \left(\right. m o d 2 \left.\right) .\)

Suy ra:

\(a^{49} + b^{49} + c^{49} \equiv a + b + c = 2100 \equiv 0 \left(\right. m o d 2 \left.\right) .\)

Vậy biểu thức chia hết cho 2.


2. Chia hết cho 3:
Xét các số dư mod 3:

  • Nếu \(x \equiv 0\) thì \(x^{49} \equiv 0\).
  • Nếu \(x \equiv 1\) thì \(x^{49} \equiv 1\).
  • Nếu \(x \equiv 2\) thì \(x^{49} \equiv 2^{49} \equiv 2\) (vì \(2 \equiv - 1\)\(\left(\right. - 1 \left.\right)^{49} = - 1 \equiv 2\)).

Vậy với mọi \(x\), ta có \(x^{49} \equiv x \left(\right. m o d 3 \left.\right)\).

Suy ra:

\(a^{49} + b^{49} + c^{49} \equiv a + b + c = 2100 \equiv 0 \left(\right. m o d 3 \left.\right) .\)

Nên biểu thức chia hết cho 3.


3. Chia hết cho 7:
Theo định lí Fermat nhỏ: nếu \(\left(\right. x , 7 \left.\right) = 1\) thì

\(x^{6} \equiv 1 \left(\right. m o d 7 \left.\right) .\)

Do đó:

\(x^{49} = x^{6 \cdot 8 + 1} \equiv \left(\right. x^{6} \left.\right)^{8} \cdot x \equiv 1^{8} \cdot x \equiv x \left(\right. m o d 7 \left.\right) .\)

Nếu \(7 \mid x\) thì hiển nhiên \(x^{49} \equiv x \equiv 0 \left(\right. m o d 7 \left.\right)\).

Vậy với mọi \(x\), ta có \(x^{49} \equiv x \left(\right. m o d 7 \left.\right)\).

Suy ra:

\(a^{49} + b^{49} + c^{49} \equiv a + b + c = 2100 \equiv 0 \left(\right. m o d 7 \left.\right) .\)


Kết luận:
Biểu thức \(a^{49} + b^{49} + c^{49}\) chia hết cho \(2 , 3 , 7\).
Vậy nó chia hết cho \(\text{BCNN} \left(\right. 2 , 3 , 7 \left.\right) = 42\).

\(\).

DD
7 tháng 11 2021

\(a+b+c=c^3-19c=c^3-c-18c=c\left(c-1\right)\left(c+1\right)-18c\)

Có \(c\left(c-1\right)\left(c+1\right)\)là tích của ba số nguyên liên tiếp nên chia hết cho \(6\)\(18c\)chia hết cho \(6\)

suy ra \(a+b+c\)chia hết cho \(6\).

\(a^3+b^3+c^3-a-b-c=a^3-a+b^3-b+c^3-c\)

\(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)

có \(a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\)chia hết cho \(6\)do là tổng của \(3\)số hạng chia hết cho \(6\)\(a+b+c\)chia hết cho \(6\)

suy ra \(a^3+b^3+c^3\)chia hết cho \(6\).

21 tháng 7 2019

\(\sqrt{a+c}-\sqrt{a}< \sqrt{b+c}-\sqrt{b}\)

\(\Leftrightarrow\sqrt{a+c}+\sqrt{b}< \sqrt{b+c}+\sqrt{a}\)

\(\Leftrightarrow\left(\sqrt{a+c}+\sqrt{b}\right)^2< \left(\sqrt{b+c}+\sqrt{a}\right)^2\)

\(\Leftrightarrow a+b+c+2\sqrt{ab+bc}< a+b+c+2\sqrt{ab+ac}\)

\(\Leftrightarrow2\sqrt{ab+bc}< 2\sqrt{ab+ac}\Leftrightarrow\sqrt{ab+bc}< \sqrt{ab+ac}\)(đúng vs a>b) .Vậy bđt cần cm đúng