K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

3/Câu hỏi của không tên - toán 8 :)

12 tháng 4 2019

bạn nào xàm dữ :((

24 tháng 3 2018

2017/2 ( áp dụng tích chất dãy tỉ số bằng nhau)

25 tháng 4 2018

tham khảo bài tương tự này :  

Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath

8 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b-2017c}{c}=\frac{b+c-2017a}{a}=\frac{c+a-2017b}{b}\)

\(=\frac{a+b-2017c+b+c-2017a+c+a-2017b}{a+b+c}=\frac{-2015\left(a+b+c\right)}{a+b+c}=-2015\)

Do đó : 

\(\frac{a+b-2017c}{c}=-2015\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)

\(\frac{b+c-2017a}{a}=-2015\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)

\(\frac{c+a-2017b}{b}=-2015\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)

Thay (1), (2) và (3) vào \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\) ta được : 

\(B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy \(B=8\)

Chúc bạn học tốt ~ 

7 tháng 10 2017

b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)

8 tháng 10 2017

Chương I  : Số hữu tỉ. Số thực

11 tháng 11 2019

Bài 2:

Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}.\)

Chúc bạn học tốt!

12 tháng 11 2019

thanks nhiều nha