Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a, b là các số nguyên. chứng minh rằng a^3+b^3 chia hết cho 3 khi và chỉ khi a +b chia hết cho 3
Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
mà \(a^3+b^3⋮3\)
và \(3ab\left(a+b\right)⋮3\)
nên \(a+b⋮3\)
9x2 + 5y chia hết cho 17
mà ƯCLN(4 ; 17) = 1
nên 4(9x2 + 5y) chia hết cho 17
hay 36x2 + 20y chia hết cho 17
mà 34x2 chia hết cho 17 ; 17y chia hết cho 17
nên 36x2 + 20y - 34x2 - 17y = 2x2 + 3y chia hết cho 17
***
3x2 - 7y chia hết cho 23
mà ƯCLN(17 ; 23) = 1
nên 17(3x2 - 7y) chia hết cho 23
hay 51x2 - 119y chia hết cho 23
mà 46x2 chia hết cho 23 ; 115y chia hết cho 23
nên 51x2 - 119y - 46x2 + 115y = 5x2 - 4y chia hết cho 23
Chúc bạn học tốt ^^
Xét hiệu a3 + b3 - ( a + b ) ta có :
a3 + b3 - ( a + b ) = a3 + b3 - a - b = ( a3 - a ) + ( b3 - b ) = a( a2 - 1 ) + b( b2 - 1 ) = a( a - 1 )( a + 1 ) + b( b - 1 )( b + 1 )
Vì a,b nguyên nên a , a - 1 , a + 1 và b , b - 1 , b + 1 là 3 số nguyên liên tiếp
=> a( a - 1 )( a + 1 ) ⋮ 3 và b( b - 1 )( b + 1 ) ⋮ 3
=> a( a - 1 )( a + 1 ) + b( b - 1 )( b + 1 ) ⋮ 3 hay a3 + b3 - ( a + b ) ⋮ 3
mà a + b ⋮ 3 => a3 + b3 ⋮ 3 ( đpcm )
a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B
Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.
b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)
2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi a - 2b chia hết cho 5.
c) Tương tự: P = 3x2 - 10y = 13x2 - 10x2 - 10y = 13x2 - 10(x2 + y)
10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.