K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Ta có:

\(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^5=-c^5\)

\(\Rightarrow a^5+5a^4b+10a^3b+10a^2b^3+5ab^4+b^5=-c^5\)

\(\Rightarrow a^5+b^5+c^5=5ab\left(a^3+b^3+2a^2b+2ab^2\right)\)

\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a^3+b^3\right)+2ab\left(a+b\right)\right]\)

\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)

\(\Rightarrow a^5+b^5+c^5=5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)

\(\Rightarrow a^5+b^5+c^5=-5abc\left(a^2+ab+b^2\right)\)

\(\Rightarrowđpcm\)

13 tháng 8 2019

Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi trên là c/m \(a^3+b^3+c^3=3abc\)

Vậy thì suy ra được \(a^3+b^3+c^3⋮3abc\)

Mấy câu còn lại tương tự

9 tháng 10 2019

Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

15 tháng 4 2018

a, Vì a,b,c dương nên : \(a+b+c\ge3\sqrt[3]{abc}\)      (1)

 \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)    (2)

Nhân vế theo vế 1 và 2 ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{\frac{abc}{abc}}=9\)

Mà a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

15 tháng 4 2018

còn câu b nữa giúp với

Ta có: (a^5-a)= a(a^4-1)

= a(a^2-1)(a^2+1) 

= a(a-1)(a+1)(a^2+1) 

= a(a-1)(a+1)(a^2-4+5) 

= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1) 

Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30 

5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30 

=> a^5-a chia hết cho 30  

=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30 

Mà a+b+c chia hết cho 30 

=> a^5+b^5+c^5 chia hết cho 30

15 tháng 12 2017

\(a^3-a+b^3-b+c^3-c+d^3-d\)

\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\) chia hết cho 3

Mà \(a^3+b^3=2\left(c^3+d^3\right)\) nên \(a^3+b^3+c^3+d^3=3\left(c^3+d^3\right)\) chia hết cho 3

\(\Rightarrow-a-b-c-d⋮3\Rightarrow a+b+c+d⋮3\)