Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\) nên trong 3 số a;b;c phải có ít nhất 1 số dương
Do vai trò của 3 biến như nhau, ko mất tính tổng quát, giả sử \(c>0\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc=-6\)
\(\Rightarrow F=\dfrac{ab+bc+ca-\left(a^2+b^2+c^2\right)}{-6}=\dfrac{3\left(ab+bc+ca\right)}{-6}=\dfrac{ab+bc+ca}{-2}\)
\(=\dfrac{-\dfrac{2}{c}+c\left(a+b\right)}{-2}=\dfrac{-\dfrac{2}{c}+c\left(-c\right)}{-2}=\dfrac{c^2}{2}+\dfrac{1}{c}=\dfrac{c^2}{2}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2}{8c^2}}=\dfrac{3}{2}\)
\(F_{min}=\dfrac{3}{2}\) khi \(\left(a;b;c\right)=\left(-2;1;1\right)\) và các hoán vị
b,Cho a,b,c,d là các số nguyên thỏa mãn :5(a^3+b^3)=13(c^3+d^3).Chứng minh (a+b+c+d) cchia hết cho 6
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
\(P=2\left(a+b+c\right)+\dfrac{3}{a+b+c}=\dfrac{a+b+c}{12}+\dfrac{3}{a+b+c}+\dfrac{23}{12}\left(a+b+c\right)\)
\(P\ge2\sqrt{\dfrac{3\left(a+b+c\right)}{12\left(a+b+c\right)}}+\dfrac{23}{12}.6=\dfrac{25}{2}\)
\(P_{min}=\dfrac{25}{2}\) khi \(a=b=c=2\)
Bài 8:
Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.
Tìm GTNN của F=a2+b2+x2+y2+bx+ayF=a2+b2+x2+y2+bx+ay
Lời giải:
Sử dụng giả thiết ax−by=√3ax−by=3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức CauchyCauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9
⇒2√x2+3+x≥3⇒2x2+3+x≥3
Vậy MinT=3MinT=3
Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;
∑2a2−bcb2−bc+c2≥3∑2a2−bcb2−bc+c2≥3
Không mất tính tổng quát, ta có thể giả sử bb là số nằm giữa aa và cc
BĐT đã cho tương đương với
∑2a2+(b−c)2b2−bc+c2≥6∑2a2+(b−c)2b2−bc+c2≥6
Áp dụng BĐT Cauchy-Schwarz, ta có
∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a
∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a
Do đó ta chỉ cần chứng minh
(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)
Ta có
b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)
≥a2(b−c)2+c2(a−b)2≥a2(b−c)2+c2(a−b)2
Suy ra
2b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)22b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)2
⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a
Do đó ta chỉ còn phải chứng minh
(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a
⇔∑a4+abc∑a≥2∑a2b2⇔∑a4+abc∑a≥2∑a2b2
BĐT này hiển nhiên đúng theo BĐT Schur
∑a4+abc∑a≥∑ab(a2+b2)∑a4+abc∑a≥∑ab(a2+b2)
Và BĐT AM-GM
∑ab(a2+b2)≥2∑a2b2∑ab(a2+b2)≥2∑a2b2
Kết thúc chứng minh
Đẳng thức xảy ra khi a=b=ca=b=c hoặc a=ba=b, c=0c=0 và các hoán vị.
=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)
=>5(a^3+b^3+c^3+d^3) chia hết cho 6
=>a^3+b^3+c^3+d^3 chia hêt cho 6
a^3-a=a(a+1)(a-1) chia hết cho 3!=6
b^3-b=b(b+1)(b-1) chia hết cho 3!=6
c^3-c=c(c+1)(c-1) chia hết cho 3!=6
d^3-d=d(d+1)(d-1) chia hết cho 3!=6
=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6
=>a+b+c+d chia hết cho 6
Câu hỏi của Thị Kim Vĩnh Bùi - Toán lớp 8 - Học toán với OnlineMath
Thya các giá trị của a, b, c., d vào M . Tính đc M = 0