Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Nếu x < y thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) hay \(\frac{a}{b}\) < \(\frac{2m}{2n}\) < \(\frac{c}{d}\)
Suy ra \(\frac{a}{b}\) < \(\frac{m}{n}\) < \(\frac{c}{d}\)
hay x < z < y
- Nếu x > y thì \(\frac{a}{b}\) > \(\frac{a+c}{b+d}\) > \(\frac{c}{d}\) hay \(\frac{a}{b}\) > \(\frac{2m}{2n}\) > \(\frac{c}{d}\)
Suy ra \(\frac{a}{b}\) > \(\frac{m}{n}\) > \(\frac{c}{d}\)
hay x > z > y
Theo đề ra, ta có:
\(x=\frac{a}{b};y=\frac{c}{d};z=\frac{m}{n}=\frac{\frac{a+c}{2}}{\frac{b+d}{2}}=\frac{a+c}{b+d}\)
*) Nếu \(\frac{a}{b}>\frac{c}{d}\) \(=>ad>bc=>ad+cd>bc+cd=>d\left(a+c\right)>c\left(b+d\right)=>\frac{a+c}{b+d}>\frac{c}{d}\)
và \(ad+ab>bc+ab=>a\left(d+b\right)>b\left(a+c\right)=>\frac{a}{b}>\frac{a+c}{b+d}\) => \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}=>x>z>y\)
*) Nếu \(\frac{a}{b}< \frac{c}{d}\) thì tương tự và được \(x< z< y\)
Ta có : z = \(\frac{m}{n}\)= \(\frac{\frac{a+c}{2}}{\frac{b+d}{2}}=\frac{a+c}{b+d}=\frac{2m}{2n}\)
Nếu x < y thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)\(\Rightarrow\frac{a}{b}< \frac{2m}{2n}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{m}{n}< \frac{c}{d}\)\(\Rightarrow x< z< y\)
Nếu x > y thì : \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)\(\Rightarrow\frac{a}{b}>\frac{2m}{2n}>\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}>\frac{m}{n}>\frac{c}{d}\)\(\Rightarrow x>z>y\)
Vậy ...
a, ta có:x-y=a/b - c/d
=> x - y = ad-bc/ bd=1/bd mà b,d,n>0=>bd>0=> 1/bd>0
=>x >y(1)
ta lại có y-z =cn-dm/dn=1/dn
mà b,d,n=> dn>0=> 1/dn >0
=>y>z(2)
từ (1) ,(2) =>x>y>z
còn ý b các bạn tự suy nghĩ nhé
chúc các bạn học giỏi