Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\)là số hữu tỉ khi \(a-17\ne0\Leftrightarrow a\ne17\).
b) \(x\)là số hữu tỉ dương khi \(\frac{13}{a-17}>0\Leftrightarrow a-17>0\Leftrightarrow a>17\).
c) \(x\)là số hữu tỉ âm khi \(\frac{13}{a-17}< 0\Leftrightarrow a-17< 0\Leftrightarrow a< 17\).
d) \(x=-1\Rightarrow\frac{13}{a-17}=-1\Rightarrow13=17-a\Leftrightarrow a=4\).
e) \(x>1\Rightarrow\frac{13}{a-17}>1\Leftrightarrow\frac{13-a+17}{a-17}>0\Leftrightarrow\frac{30-a}{a-17}>0\Leftrightarrow17< a< 30\).
f) \(0< x< 1\Rightarrow0< \frac{13}{a-17}< 1\Leftrightarrow a-17>13\Leftrightarrow a>30\).
a) x và y là số hữu tỉ nên x có dạng a/b,y có dạng c/d
vì x<y =>a/b<c/d
(=)a.d<b.c(đpcm)
(Sửa \(cn-bm\rightarrow cn-dm\))
Ta có :
\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)
\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)
\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)
\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)
* So sánh \(\frac{a}{b}and\frac{a+c}{b+d}\)
\(\frac{a}{b}=\frac{a.\left(b+d\right)}{b.\left(b+d\right)}\) và \(\frac{a+c}{b+d}=\frac{\left(a+c\right).b}{\left(b+d\right).b}\)
TỪ đây ta so sánh a.(b+d) và ( a+ c).b
a.( b+d) = ab+ ad
(a+c). b = ab+ bc
Nếu \(\frac{a}{b}>\frac{c}{d}\)thì x> z
nếu \(\frac{a}{b}< \frac{c}{d}\)thì x < z
nếu \(\frac{a}{b}=\frac{c}{d}\)thì x = z
So sánh y và z cũng tương tự!
Vì \(\frac{a}{b}< \frac{c}{d}\) nên ad < bc (1)
Xét tích : \(a\left(b+d\right)=ab+ad\) (2)
\(b\left(a+c\right)=ba+bc\) (3)
Từ (1) , (2) , (3) suy ra :
\(a\left(b+d\right)< b\left(a+c\right)\)
Do đó : \(\frac{a}{b}< \frac{a+c}{b+d}\) (4)
Tương tự ta có :\(\frac{a+c}{b+d}< \frac{c}{d}\) (5)
Từ (4) , (5) ta được : \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Hay \(x< z< y\)