Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì x<y⇒ab <cd ⇒ad<bc (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> ab <a+cb+d
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> a+cb+d <cd
=> z < y (2)
Từ (1) và (2) => x < z < y
Ta có : z = \(\frac{m}{n}\)= \(\frac{\frac{a+c}{2}}{\frac{b+d}{2}}=\frac{a+c}{b+d}=\frac{2m}{2n}\)
Nếu x < y thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)\(\Rightarrow\frac{a}{b}< \frac{2m}{2n}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{m}{n}< \frac{c}{d}\)\(\Rightarrow x< z< y\)
Nếu x > y thì : \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)\(\Rightarrow\frac{a}{b}>\frac{2m}{2n}>\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}>\frac{m}{n}>\frac{c}{d}\)\(\Rightarrow x>z>y\)
Vậy ...
2.P=\(\frac{3-a}{a+10}\)
a, để P>0
TH1 3-a>0 và a+10 >0
=> a<3 và a> -10
=> -10<a<3
TH2 3-a<0 và a+10<0
=> a>3 và a<-10(vô lý)
Vậy để P>0 thì -10<a<3
b.để P<0
TH1 3-a<0 và a+10>0
a>3 và a>-10
Vậy a>3
TH2 3-a>0 và a+10<0
=> a<3 và a<-10
Vậy a<-10
vậy để P<0 thì a >3 hoặc a<-10
bài 3.
a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)
Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)
b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)
Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)
c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)
Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)
1.a) Ta có:
\(\frac{18}{-25}=-\frac{18.12}{25.12}=-\frac{216}{300}< -\frac{213}{300}\)
Vậy \(-\frac{213}{300}>\frac{18}{-25}\)
b) Ta có:
\(0,75>0>-\frac{3}{4}\)
Vậy \(0,75>-\frac{3}{4}\)
2, * Khi a, b cùng dấu thì \(\frac{a}{b}>0\)
* Khi a, b khác dấu thì \(\frac{a}{b}< 0\)
Đây là kiến thức cơ bản !
Sửa đề : \(z=\frac{a+c}{b+d}\)
Vì x < y
=> \(\frac{a}{b}< \frac{c}{d}\)
<=> \(ad< bc\)
<=> \(ab+ad< bc+ba\)
<=> \(a\left(b+d\right)< b\left(c+a\right)\)
<=> \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
=> x < z < y
Ta có: y/3 = z/7 => y/12 = z/28 (cùng nhân 2 vế với 1/4).
Mà x/11 = y/12 (GT)
=> x/11 = y/12 = z/28
<=> 2x/22 = y/12 = z/28 = 2x - y + z /22 - 12 + 28 = 152/38 = 4
2x/22 = 4 => 2x = 88 => x = 44.
y/12 = 4 => y = 48.
z/28 = 4 => z = 112.
Vậy x = 44, y=48 và z = 112
\(\frac{x}{11}=\frac{y}{12}\)(1)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\)(2)
Từ ( 1 ) và ( 2 ) => \(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)và 2x - y + z = 152
=> \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)và 2x - y + z = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}=4\)
\(\frac{2x}{22}=4\Leftrightarrow\frac{x}{11}=4\Rightarrow x=44\)
\(\frac{y}{12}=4\Rightarrow y=48\)
\(\frac{z}{28}=4\Rightarrow z=112\)