Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có:
\(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\\\left(x-3\right)\left(y-3\right)\left(3-z\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\ge0\\-xyz+3\left(xy+yz+zx\right)-9\left(x+y+z\right)+27\ge0\end{matrix}\right.\)
Lấy trên + dưới ta được
\(4\left(xy+yz+zx\right)-8\left(x+y+z\right)+28\ge0\)
\(\Leftrightarrow4\left(xy+yz+zx\right)+20\ge0\)
\(\Leftrightarrow2\left(x+y+z\right)^2+20\ge2x^2+2y^2+2z^2\)
\(\Leftrightarrow x^2+y^2+z^2\le11\)
Bài này Karamata là vừa :D
Giả sử \(a\ge b\ge c\)
Khi \(f\left(x\right)=x^2\) là hàm lồi trên \(\left[-1,3\right]\) và \((-1,-1,3)\succ(a,b,c)\)
Theo Karamata's inequality ta có:
\(11=\left(-1\right)^2+\left(-1\right)^2+3^2\ge a^2+b^2+c^2\)
1.ap dung bdt bunhiacopski
2.Ap dung Bdt can a + can b >= can (a+b) de tim min
Bunhiacopski de tim max
ở xã hội này chỉ có làm mới có ăn những loại không làm mà đòi ăn thì ăn đầu bòi ăn cut nháa
Dự đoán dấu = xảy ra khi x=y=\(\dfrac{z}{2}\)
ta có: \(VT=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{x^2}\)
\(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\right)+\left(\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}\right)\)
Áp dụng BĐT AM-GM: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\)
Áp dụng BĐT bunyakovsky:\(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\ge\dfrac{1}{2}\left(\dfrac{y}{z}+\dfrac{x}{z}\right)^2=\dfrac{1}{2}.\dfrac{\left(x+y\right)^2}{z^2}\)
\(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\ge\dfrac{1}{2}\left(\dfrac{z}{x}+\dfrac{z}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2=\dfrac{8z^2}{\left(x+y\right)^2}\)(AM-GM)
do đó \(VT\ge5+\dfrac{1}{2}\dfrac{\left(x+y\right)^2}{z^2}+\dfrac{8z^2}{\left(x+y\right)^2}\)
Đặt \(\dfrac{z}{x+y}=a\)(a>0)thì \(a\ge1\)do \(z\ge x+y\)
\(VT\ge8a^2+\dfrac{1}{2a^2}+5=\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{15}{2}a^2+5\ge\dfrac{a^2}{2}+\dfrac{1}{2a^2}+\dfrac{25}{2}\)
Áp dụng BĐT AM-GM: \(\dfrac{a^2}{2}+\dfrac{1}{2a^2}\ge2\sqrt{\dfrac{a^2}{4a^2}}=1\)
do đó \(VT\ge1+\dfrac{25}{2}=\dfrac{27}{2}\)(đpcm)
Dấu = xảy ra khi a=1 hay \(x=y=\dfrac{z}{2}\)
\(a,\)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Sai đề rồi nha bạn! Điều kiện: \(x^2+y^3\ge x^3+y^4\)
Sử dụng bất đẳng thức \(C-S,\) ta có:
\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)
\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)
\(\Rightarrow\) \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\) \(\Leftrightarrow\) \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)
Lại có: \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)
\(\Rightarrow\) \(x^2+y^2\le x+y\) \(\left(2\right)\)
Mặt khác, từ \(\left(2\right)\) với lưu ý rằng \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và \(x,y\in R^+\) , ta thu được:
\(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\) \(x^2+y^2\le2\) \(\left(3\right)\)
nên do đó, \(\left(i\right)\) suy ra \(x+y\le\sqrt{2.2}=2\) \(\left(4\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\) và \(\left(4\right)\) ta có đpcm