\(x^2+1=y^2\)

Tìm GTNN của  ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

với x,y>0 ta áp dụng BĐT cauchy nên ta có: 1+y \(\ge\)\(\sqrt{y}\)>0 (1)

với x,y>0 ta áp dụng BĐT cauchy nên ta có: 1+y/x \(\ge\)\(\sqrt{\frac{y}{x}}\)>0 (2)

Nhân theo vế của 2 BĐT (1),(2) ta có :(1+y)(1+y/x) \(\ge\)2\(\sqrt{y}\) 2.\(\sqrt{\frac{y}{x}}\)=4 \(\sqrt{\frac{y^2}{x}}\)=4 \(\sqrt{\frac{x^2+1}{x}}\)\(\ge\)  4 \(\sqrt{\frac{2x}{x}}\) (áp dụng BĐT cauchy cho x^2+1) =4 \(\sqrt{2}\)

Dấu "=" xảy ra khi x=1 và y=4

16 tháng 6 2018

mình ghi lộn dấu bằng xảy ra khi x=1 y=căn 2

15 tháng 9 2018

TA CÓ:

\(B=\frac{1}{\sqrt{x\left(y+2z\right)}}+\frac{1}{\sqrt{y\left(z+2x\right)}}+\frac{1}{\sqrt{z\left(x+2y\right)}}\ge\frac{1}{\frac{x+y+2z}{2}}+\frac{1}{\frac{y+z+2x}{2}}+\frac{1}{\frac{z+x+2y}{2}}\)

\(\ge\frac{\left(1+1+1\right)^2}{\frac{3}{2}\left(x+y+z\right)}=\frac{18}{3\sqrt{3}}=\frac{6}{\sqrt{3}}\)

DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

15 tháng 9 2018

\(\frac{B}{\sqrt{3}}=\frac{1}{\sqrt{3x\left(y+2z\right)}}+\frac{1}{\sqrt{3y\left(z+2x\right)}}+\frac{1}{\sqrt{3z\left(x+2y\right)}}\) 

\(\ge\frac{1}{\frac{3x+y+2z}{2}}+\frac{1}{\frac{3y+z+2x}{2}}+\frac{1}{\frac{3z+x+2y}{2}}\ge\frac{2\left(1+1+1\right)^2}{6\left(x+y+z\right)}=\frac{18}{6\sqrt{3}}\) 

\(\Rightarrow B\ge\frac{18\sqrt{3}}{6\sqrt{3}}=3\) 

Dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\)

2 tháng 6 2016

=> P = 2*2^2 - 6*1 + 9*1/2^2

=> P = 8 - 6 + 9/4

=> P= 17/4

2 tháng 6 2016

=> P = 2*2^2 - 6*1 + 9*1/2^2

=> P = 8 - 6 + 9/4

=> P = 17/4

9 tháng 3 2016

Theo bất đẳng thức Cô-Si, ta có \(1=x+y\ge2\sqrt{xy}\to xy\le\frac{1}{4}.\) Do vậy áp dụng bất đẳng thức Cô-Si 

\(xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{xy\cdot\frac{1}{16xy}}+\frac{15}{16\cdot\frac{1}{4}}=\frac{17}{4}.\)

a. Ta có \(M=\left(xy\right)^2+\frac{1}{\left(xy\right)^2}+2=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{17}{4}\right)^2=\frac{289}{16}.\)  Dấu bằng xảy ra khi \(x=y=\frac{1}{2}.\) Vây giá trị bé nhất của M là \(\frac{289}{16}.\)
b.  Theo bất đẳng thức Cô-Si 

\(N\ge2\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=2\left(xy+\frac{1}{xy}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\cdot\frac{17}{4}+4\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=\frac{25}{2}.\)

Dấu bằng xảy ra khi và chỉ \(x=y=\frac{1}{2}.\) 

23 tháng 5 2016

kho ghe

23 tháng 5 2016

\(a+b+c=1\)

\(P=\frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{a^2+b^2}\)

17 tháng 2 2017

Dự đoán khi \(x=y=z=\sqrt{3}\) vậy dc GTNN là \(\frac{3\sqrt{3}}{2}\), cần c/m: \(P\ge\frac{3\sqrt{3}}{2}\)

\(\LeftrightarrowΣ\frac{y^2z^2}{x\left(y^2+z^2\right)}\ge\frac{3}{2}\sqrt{\frac{3}{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}}\)

\(\LeftrightarrowΣ\frac{y^3z^3}{y^2+z^2}\ge\frac{3}{2}\sqrt{\frac{3x^4y^4z^4}{x^2y^2+x^2z^2+y^2z^2}}\).Đặt \(\hept{\begin{cases}yz=a\\xz=b\\xy=c\end{cases}}\)

Khi đó ta cần chứng minh \(Σ\frac{a^3}{\frac{ac}{b}+\frac{ab}{c}}\ge\frac{3}{2}\sqrt{\frac{3a^2b^2c^2}{a^2+b^2+c^2}}\)

\(\LeftrightarrowΣ\frac{a^2}{b^2+c^2}\ge\frac{3}{2}\sqrt{\frac{3}{a^2+b^2+c^2}}\) và từ BĐT thuần nhất cuối , ta có thế khẳng định rằng \(a^2+b^2+c^2=3\)

Có nghĩa là ta cần c/m \(Σ\frac{a}{3-a^2}\ge\frac{3}{2}\LeftrightarrowΣ\left(\frac{a}{3-a^2}-\frac{1}{2}\right)\ge0\)

\(\LeftrightarrowΣ\frac{\left(a-1\right)\left(a+3\right)}{3-a^2}\ge0\)\(\LeftrightarrowΣ\left(\frac{\left(a-1\right)\left(a+3\right)}{3-a^2}-\left(a^2-1\right)\right)\ge0\)

\(\LeftrightarrowΣ\frac{a\left(a+2\right)\left(a-1\right)^2}{3-a^2}\ge0\) . XOng!

26 tháng 5 2019

áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)

26 tháng 5 2019

1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1

Tìm GTNN của P= x-1/y+y-1/x+ x-1/x2

               Giải

Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1

Theo AM-GM ta có:

P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1

Dấu = xảy ra⇔x=y=z=1√3

P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!

2 tháng 6 2016

mk ko bit

mik tính ko ra