Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Chứng minh nó chia hết cho 3:
Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.
\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.
\(\Rightarrow xy⋮3\)
Chứng minh chia hết cho 4.
Nếu cả x, y đều chẵn thì \(xy⋮4\)
Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ
\(\Rightarrow x=2k+1;y=2m;z=2n+1\)
\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m⋮2\)
\(\Rightarrow y⋮4\)
\(\Rightarrow xy⋮4\)
Với x, y đều lẻ nên z chẵn
\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)
\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này
Vậy \(xy⋮4\)
Từ chứng minh trên
\(\Rightarrow xy⋮12\)
2/ \(a+b=c+d\)
\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)
\(\Leftrightarrow2ab=2cd\)
\(\Leftrightarrow-2ab=-2cd\)
\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)
Kết hợp với \(a+b=c+d\)
\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)
\(\RightarrowĐPCM\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{3} \Leftrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}(vì a+b+c=3)\)
\(\Leftrightarrow \dfrac{1}{a}+ \dfrac{1}{b}= \dfrac{1}{a+b+c}- \dfrac{1}{c }\)
\(\Leftrightarrow \dfrac{b+a}{ab}=\dfrac{c-a-b-c}{ac+bc+c^{2}}\)
\(\Leftrightarrow \dfrac{a+b}{ab}=\dfrac{a+b}{-ac-bc-c^2}\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab=-ac-bc-c^2 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab+ac+bc+c^2=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ (a+c)(b+c)=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ a+c=0\\ b+c=0 \end{array} \right.\)
Vì vai trò của a,b,c là như nhau nên ta giả sử a+b=0
mà a+b+c=0
\(\Rightarrow c=3\)
Thay c=3 vào biểu thức P ta có:
\(P=(a-3)^{2017}.(b-3)^{2017}.(3-3)^{2017} =0 \)
Vậy P=0
cho mình sữa lại là - c2017 / a2017 chứ ko phãi là c2017 - a2017 nha
\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Leftrightarrow a=b=c\) (a,b,c là các số dương)
Bạn thay vào A để tính.
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow (\frac{1}{a}+\frac{1}{b})+(\frac{1}{c}-\frac{1}{a+b+c})=0$
$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$
$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$
$\Leftrightarrow \frac{(a+b)(c+a)(c+b)}{abc(a+b+c)}=0$
$\Leftrightarrow (a+b)(c+a)(c+b)=0$
$\Leftrightarrow a+b=0$ hoặc $c+a=0$ hoặc $c+b=0$
Không mất tổng quát giả sử $a+b=0$
$\Leftrightarrow a=-b$.
Khi đó:
$\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{-1}{b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}$
$=\frac{1}{a^{2017}+b^{2017}+c^{2017}}$ (đpcm)
Lần sau bạn lưu ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt nhất. Mọi người đọc đề của bạn dễ hiểu thì cũng sẽ dễ giúp hơn.