\(a^2+b^2+c^2+d^2+a\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

Ta có: \(a^2+b^2+c^2+d^2\ge4\sqrt[4]{\left(abcd\right)^2}=4\)(AM-GM) (abcd=1)

Lại có: \(a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\)

\(=ab+ac+bc+bd+cd+ac+ad+bd\)

\(\ge8\sqrt[8]{\left(abcd\right)^4}=8\)(AM-GM)

Từ đó: 

\(a^2+b^2+c^2+d^2+a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\ge4+8=12\)

=> ĐPCM. Dấu "=" xảy ra <=> a=b=c=d=1.

6 tháng 1 2020

Nhận xét:Ghi nhớ tam giác Pascal cho bậc 4:\(1\rightarrow4\rightarrow6\rightarrow4\rightarrow1\)

cần cù bù thông minh :)

\(a^2+b^2+\left(a-b\right)^2=c^2+d^2+\left(c-d\right)^2\)

\(\Leftrightarrow a^2+b^2+a^2-2ab+b^2=c^2+d^2+c^2-2cd+d^2\)

\(\Leftrightarrow a^2-ab+b^2=c^2-cd+d^2\)

\(\Rightarrow\left(a^2-ab+b^2\right)^2=\left(c^2-cd+d^2\right)^2\) ( mạnh dạn bình phương )

\(\Leftrightarrow a^4+a^2b^2+b^4-2a^3b-2ab^3+2a^2b^2=c^4+c^2d^2+d^4-2c^3d-2cd^3+2c^2d^2\)

\(\Leftrightarrow a^4+3a^2b^2+b^4-2a^3b-2ab^3=c^4+3c^2d^2+d^4-2c^3d-2cd^3\left(1\right)\)

Mặt khác:

\(a^4+b^4+\left(a-b\right)^4\)

\(=a^4+b^4+a^4-4a^3b+6a^2b^2-4ab^3+b^4\)

\(=2\left(a^4-2a^3b-2ab^3+3a^2b^2\right)\left(2\right)\)

Tương tự:

\(c^4+d^4+\left(c-d\right)^4=2\left(c^4-2c^3d-2cd^3+3c^2d^2\right)\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) suy ra đpcm

5 tháng 9 2020

Theo giả thiết \(a^2+b^2+c^2+d^2=1\Rightarrow0< a,b,c,d< 1\)

Ta có: \(2\left(1-a\right)\left(1-b\right)=2-2\left(a+b\right)+2ab=a^2+b^2+c^2+d^2+1\)\(-2a-2b+2ab-2cd+2cd=\left(a+b-1\right)^2+\left(c-d\right)^2+2cd\ge2cd\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge cd\)(*)

Tương tự ta có: \(\left(1-c\right)\left(1-d\right)\ge ab\)(**)

Nhân theo từng vế cùng chiều của hai BĐT (*) và (**), ta được: \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\ge abcd\)

Đẳng thức xảy ra khi \(a=b=c=d=\frac{1}{2}\)

9 tháng 10 2017

https://diendantoanhoc.net/topic/76281-bdt-thi-h%E1%BB%8Dc-sinh-gi%E1%BB%8Fi-t%E1%BB%89nh-l%E1%BB%9Bp-9-nam-2011-2012/

6 tháng 10 2017

max P=4 

7 tháng 10 2017

Làm cụ thể ạ?

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)

18 tháng 9 2018

\(\sqrt{2012}=\left(abc+bcd-a-d\right)+\left(cda+dab-c-b\right)\)

\(=\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\)

\(\Rightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\right]^2\)

\(\le\left[\left(bc-1\right)^2+\left(c+b\right)^2\right]\left[\left(a+d\right)^2+\left(ad-1\right)^2\right]\)

\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)

13 tháng 1 2019

Điều cần chứng minh luôn đúng mà bạn -.-

14 tháng 1 2019

\(c\ge a,c\ge b\Rightarrow c\ge a+b\)(luôn đúng)

WTF!?!mấy cái dữ liện trên làm cảnh ak!?!

v:))