Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Zới mọi \(x,y>0\), áp dụng BĐT AM-GM ta có
\(x^2+y^2=\frac{2xy\left(x^2+y^2\right)}{2xy}\le\frac{\frac{\left(2xy+x^2+y^2\right)^2}{4}}{2xy}=\frac{\left(x+y\right)^4}{8xy}\)
sử dụng kết quả trên ta thu đc các kết quả sau
\(a^2+c^2\le\frac{\left(a+c\right)^4}{8ac}=\frac{\left(a+c\right)^4bd}{8abcd}\le\frac{\left(a+c\right)^4\left(b+d\right)^2}{32abcd}\)
\(b^2+d^2\le\frac{\left(b+d\right)^4}{8bd}=\frac{\left(b+d\right)^4ac}{8abcd}\le\frac{\left(b+d\right)^4\left(c+a\right)^2}{32abcd}\)
Như zậy ta chỉ còn cần CM đc
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}+\frac{1}{da}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)
BĐT trên tương đương zới
\(\frac{\left(a+c\right)\left(b+d\right)}{abcd}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)
hay
\(\left(a+c\right)\left(b+d\right)\left[\left(a+c\right)^2+\left(b+d\right)^2\right]\le32\)
đến đây bạn lại sử dụng kết quả trên ta có ĐPCM nhá
Dễ thấy đẳng thức xảy ra khi a=b=c=d=1
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
Áp dụng BĐT Svacxơ:
\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{cd}+\dfrac{1}{da}\ge\dfrac{4}{ab+bc+cd+da}\)
Áp dụng BĐT Cô-si:
\(\dfrac{4}{ab+bc+cd+da}\ge\dfrac{4}{a^2+b^2+c^2+d^2}\)
Ta cần c/m: \(\dfrac{4}{a^2+b^2+c^2+d^2}\ge a^2+b^2+c^2+d^2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)^2\ge4\)
Áp dụng BĐT Svacxơ: \(\left(\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}+\dfrac{d^2}{1}\right)^2\ge\dfrac{\left(a+b+c+d\right)^{2^2}}{16}\)
mà a+b+c+d=4 nên: \(\dfrac{\left(a+b+c+d\right)^4}{16}\ge\dfrac{64}{16}=4=VP\)
Vậy ta có đpcm.
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
Áp dụng tương tự ta được
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+d^2}\ge c-\frac{cd}{2};\frac{d}{1+a^2}\ge c-\frac{da}{2}\)
Tương tự ta cũng được
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}=\frac{\left(a+c\right)\left(b+d\right)}{2}\le\frac{\left(a+b+c+d\right)^2}{8}=2\)
Do vậy ta được \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\)
Dấu "=" xảy ra khi a=b=c=d=1
Cho a,b,c,d là các số dương thỏa mãn a^2 + b^2=1 và a^4/c+b^4/d=1/c+d.Chứng minh rằng:a^2/c+d/b^2>=2