Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BDT\Leftrightarrow\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\ge\dfrac{1}{2a+b+c}+\dfrac{1}{2b+c+a}+\dfrac{1}{2c+a+b}\)
Áp dụng BĐT \(\dfrac{1}{nht}+\dfrac{1}{is}+\dfrac{1}{the}+\dfrac{1}{best}\ge\dfrac{16}{nht+is+the+best}\):
\(\dfrac{1}{2a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VP\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\)
\("="\Leftrightarrow a=b=c\)
sao phải làm khó nó lên thế Thảo luận | Bất đẳng thức trung bình cộng và trung bình nhân | Học trực tuyến kéo xuống tui làm r` đó
(****):
M + N = \(\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\left(\dfrac{c}{c+a}+\dfrac{a}{c+a}\right)+\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}+\dfrac{a+b}{a+b}=3\)
(*****):
M + S = \(\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\ge3.\sqrt[3]{\dfrac{a+b}{b+c}.\dfrac{b+c}{c+a}.\dfrac{c+a}{a+b}=3}\)(Cô-si cho 3 số)
N + S = \(\dfrac{a+c}{b+c}+\dfrac{a+b}{c+a}+\dfrac{b+c}{a+b}\ge3.\sqrt[3]{\dfrac{a+c}{b+c}.\dfrac{a+b}{c+a}.\dfrac{b+c}{a+b}}=3\)(Cô-si cho 3 số)
Bảo giải thích thì cứ giải thích đi Thắng, tùy cách hiểu mỗi người mà chọn cách nào chứ không bắt buộc phải heo cách của ông @Ace Legona
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)
Có nhiều cách lắm. T đơn cử 1 cách nhé
\(\sum\dfrac{a}{b+c}=\sum\dfrac{a^2}{ab+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
\(A=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3+A=\(\dfrac{a}{b+c}+1+\dfrac{b}{a+c}+1+\dfrac{c}{a+b}+1\)
3+A=\(\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\)
đặtx=a+b;y=a+c;z=b+c
=>3+A=\(\dfrac{1}{2}\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
mà (x+y+z)(\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\))\(\ge\)9
=>3+A\(\ge\dfrac{9}{2}\)
=>A\(\ge\dfrac{3}{2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{b}+\frac{1}{c}\geq \frac{4}{b+c}\)
\(\Rightarrow \frac{a}{b}+\frac{a}{c}\geq \frac{4a}{b+c}(1)\)
Hoàn toàn tương tự: \(\frac{b}{c}+\frac{b}{a}\geq \frac{4b}{c+a}(2)\)
\(\frac{c}{a}+\frac{c}{b}\geq \frac{4c}{a+b}(3)\)
Lấy \((1)+(2)+(3)\Rightarrow \frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
\(\Leftrightarrow \frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c$
\(VP=\dfrac{4a}{b+c}+\dfrac{4b}{c+a}+\dfrac{4c}{a+b}\)
Áp dụng BĐT \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\Leftrightarrow\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) có:
\(\dfrac{4a}{b+c}\le\dfrac{1}{4}\left(\dfrac{4a}{b}+\dfrac{4a}{c}\right)=\dfrac{4a}{b}\cdot\dfrac{1}{4}+\dfrac{4a}{c}\cdot\dfrac{1}{4}=\dfrac{a}{b}+\dfrac{a}{c}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\dfrac{4b}{a+c}\le\dfrac{b}{a}+\dfrac{b}{c};\dfrac{4c}{a+b}\le\dfrac{c}{a}+\dfrac{c}{b}\)
Cộng theo vế 3 BĐT trên ta có:
\(\dfrac{4a}{b+c}+\dfrac{4b}{c+a}+\dfrac{4c}{a+b}\le\left(\dfrac{a}{c}+\dfrac{b}{c}\right)+\left(\dfrac{b}{a}+\dfrac{c}{a}\right)+\left(\dfrac{c}{b}+\dfrac{a}{b}\right)\)
\(\Leftrightarrow\dfrac{4a}{b+c}+\dfrac{4b}{c+a}+\dfrac{4c}{a+b}\le\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
cảm ơn bn nhìu nha!!!