Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây : http://olm.vn/hoi-dap/question/633314.html
Đề viết mệt quá nên thay \(\sqrt{a}=a;\sqrt{b}=b;\sqrt{c}=c\) viết lại đề tiện thể sửa đề luôn.
\(a^2+b^2=\left(a+b-c\right)^2\)
Chứng minh:
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Ta có: \(a^2+b^2=\left(a+b-c\right)^2\)
\(\Leftrightarrow c^2-2ac-2bc+2ab=0\)
\(\Leftrightarrow a=\frac{c^2-2bc}{2c-2b}\)
Thế vô bài toán ta được
\(VT=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(\frac{c^2-2bc}{2c-2b}-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\frac{\left(\frac{c^2-2bc}{2c-2b}\right)^2+\left(c^2\right)^2}{b^2+\left(b-c\right)^2}=\frac{2c^2\left(2b^2+c^2-2bc\right)}{\left(2b^2+c^2-2bc\right)4\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)
Ta lại có:
\(VP=\frac{\frac{c^2-2bc}{2c-2b}-c}{b-c}=\frac{-c^2}{-2\left(c-b\right)^2}=\frac{c^2}{2\left(c-b\right)^2}\)
\(\Rightarrow\)ĐOCM
Lời giải:
Đặt \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\). Bài toán trở thành
Cho $x,y,z$ dương thỏa mãn \(y^2\neq z^2; x+y\neq z; x^2+y^2=(x+y-z)^2\)
CMR: \(\frac{x^2+(x-z)^2}{y^2+(y-z)^2}=\frac{x-z}{y-z}\)
--------------------------------------------------
Ta có:
\(x^2+y^2=(x+y-z)^2=[y+(x-z)]^2\)
\(\Leftrightarrow x^2+y^2=y^2+(x-z)^2+2y(x-z)\)
\(\Leftrightarrow x^2=(x-z)^2+2y(x-z)\)
\(\Leftrightarrow x^2+(x-z)^2=2(x-z)^2+2y(x-z)=2(x-z)(x-z+y)\)
Tương tự:
\(y^2+(y-z)^2=2(y-z)^2+2x(y-z)=2(y-z)(y-z+x)\)
Do đó: \(\frac{x^2+(x-z)^2}{y^2+(y-z)^2}=\frac{2(x-z)(x-z+y)}{2(y-z)(y-z+x)}=\frac{x-z}{y-z}\)
Ta có đpcm.
Ta có : \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}\)
\(=\frac{\frac{\left(\sqrt{a}-\sqrt{b}\right)^3\left(\sqrt{a}+\sqrt{b}\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}+2a\sqrt{a}-b\sqrt{b}}{\sqrt{a}^3-\sqrt{b}^3}+\frac{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{-\left(a-b\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^3+2a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{-\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{a\sqrt{a}+3a\sqrt{b}+3b\sqrt{a}+b\sqrt{b}+2a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{3a\sqrt{b}+3\sqrt{a}b+3a\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{3\sqrt{a}\left(\sqrt{ab}+b+a\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=-\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}=0\)
Vậy ...
a) Ta có: \(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
b)Sửa đề: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
Ta có: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}\)
\(=-2\sqrt{b}\)
c) Ta có: \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
d) Ta có: \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)^2\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)
\(=\left(a-2\sqrt{ab}+b\right)\cdot\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)
e) Ta có: \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)