K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2020

bạn kiểm tra lại xem có sai đề không

11 tháng 7 2020

Áp dụng Bất đẳng thức Cauchy cho 2 số không âm ta được :

\(a+b\ge2\sqrt[2]{ab}\)

\(b+c\ge2\sqrt[2]{bc}\)

\(c+a\ge2\sqrt[2]{ca}\)

Nhân theo vế các bất đẳng thức cùng chiều ta được :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(2\sqrt[2]{ab}\right)\left(2\sqrt[2]{bc}\right)\left(2\sqrt[2]{ca}\right)\)

\(< =>B\ge8\sqrt[2]{a^3b^3c^3}=8abc\)

Mặt khác theo giả thiết ta có : \(abc=8\)

Khi đó \(B\ge8.8=64\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)

Vậy \(Min_B=64\)khi \(a=b=c=2\)

11 tháng 7 2020

sửa lại cho mình  dòng 7 trong căn là mũ 2 nhé , đánh lộn 

20 tháng 11 2017

vì a,b,c dương => a+b khác 0 

                             b+c khác 0 

                              a+c khác 0 

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(E=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}\)

\(=\frac{1}{2}\)

vậy E = \(\frac{1}{2}\)

9 tháng 8 2018

Áp dụng BĐT AM-GM ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)

Tương tự ta có: \(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b;\) \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

Cộng 3 BĐT trên theo vế thì được: 

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c\ge\frac{3\left(a+b+c\right)}{2}\)

\(\Leftrightarrow\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{c+a}+\frac{c\left(a+b+c\right)}{a+b}\ge\frac{3\left(a+b+c\right)}{2}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)\(\Rightarrow E\ge\frac{3}{2}\).

Vậy \(Min\) \(E=\frac{3}{2}\). Đẳng thức xảy ra <=> a=b=c. 

1 tháng 9 2019

Dat \(\hept{\begin{cases}A=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\\B=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\end{cases}}\)

Ta co:\(A=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2+2+2=6\left(1\right)\)

\(B=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}-3\)

\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\left(2\right)\)

Cong ve voi ve cua (1) va (2) ta duoc:

\(P=A+B\ge6+\frac{3}{2}=\frac{15}{2}\)

Dau '=' xay ra khi \(a=b=c\)

1 tháng 9 2019

Chứng minh ĐBT:\(\frac{b}{a}+\frac{a}{b}\ge2\left(a,b\ne0\right)\)(Dấu "="\(\Leftrightarrow a=b=1\))

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(đpcm\right)\)

Vậy \(\frac{b+c}{a}+\frac{a}{b+c}\ge2\)

\(\frac{a+c}{b}+\frac{b}{c+a}\ge2\)

\(\frac{a+b}{c}+\frac{c}{b+a}\ge2\)

\(\Rightarrow P\ge6\)

Vậy \(P_{min}=6\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}}\)