\(\sqrt{2a^2+ab+2b^2}+\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2019

Cân bằng hệ số:

Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)

\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)

\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)

Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)

Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)

Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:

\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)

Dấu "=" xảy ra khi a = b =c = 1

14 tháng 5 2019

Hoa 

cả

mắt

29 tháng 5 2019

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\)

Vì a,b,c là các số dương \(\Rightarrow\frac{3}{4}\left(a-b\right)^2\ge0\)

\(\Rightarrow\sqrt{2a^2+ab+2b^2}\ge\sqrt{\frac{5}{4}}.\left(a+b\right)\)

Tương tự và cộng lại, ta có:

\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2a^2}+\sqrt{2c^2+ca+2a^2}\)\(\ge\sqrt{\frac{5}{4}}.\left(a+b+c\right)\) \(=3\sqrt{5}\)

\(''=''\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Áp dụng BĐT AM-GM dạng $x^2+y^2\geq \frac{(x+y)^2}{2}$ ta có:

\(2a^2+ab+2b^2=\frac{4a^2+2ab+4b^2}{2}=\frac{(a+b)^2+3(a^2+b^2)}{2}\geq \frac{(a+b)^2+\frac{3}{2}(a+b)^2}{2}=\frac{5}{4}(a+b)^2\)

\(\Rightarrow \sqrt{2a^2+ab+2b^2}\geq \frac{\sqrt{5}}{2}(a+b)\)

Hoàn toàn tương tự:

\( \sqrt{2b^2+bc+2c^2}\geq \frac{\sqrt{5}}{2}(b+c); \sqrt{2c^2+ac+2a^2}\geq \frac{\sqrt{5}}{2}(a+c)\)

Cộng theo vế:

\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\geq \sqrt{5}(a+b+c)=\sqrt{5}\)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

1 tháng 4 2017

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

1 tháng 4 2017

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

16 tháng 8 2020

ta có \(4\left(a^2+a+2b^2\right)=5\left(a^2+2ab+b^2\right)+3\left(a^2-2ab+b^2\right)\)\(=5\left(a+b\right)^2+3\left(a-b\right)^2\ge5\left(a+b\right)^2\)(vì \(\left(a-b\right)^2\ge0\))

vì a,b dương nên \(2\sqrt{2a^2+ab+2b^2}\ge\sqrt{5}\left(a+b\right)\Leftrightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\left(1\right)\)

dấu "=" xảy ra khi a=b

chứng minh tương tự để có \(\hept{\begin{cases}\sqrt{2b^2+bc+2c^2}\ge\frac{5}{4}\left(b+c\right)\Leftrightarrow b=c\left(2\right)\\\sqrt{2c^2+ca+2a^2}\ge\frac{5}{4}\left(a+c\right)\Leftrightarrow a=c\left(3\right)\end{cases}}\)

cộng các bất đẳng thức (1) (2) và (3) theo vế ta được

\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ac+2a^2}\ge\frac{5}{4}\cdot2\left(a+b+c\right)=2019\sqrt{5}\)

dấu "=" xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2019\end{cases}\Leftrightarrow a=b=c=673}\)

6 tháng 2 2020

* Ta có:

\(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)

* Tương tự ta có: 

\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)\(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}}{2}\left(c+a\right)\)

\(\Rightarrow P\ge\frac{\sqrt{5}}{2}\left(a+b\right)+\frac{\sqrt{5}}{2}\left(b+c\right)+\frac{\sqrt{5}}{2}\left(c+a\right)\)

\(=\sqrt{5}\left(a+b+c\right)=2019\sqrt{5}\)

(Dấu "=" xảy ra khi a = b = c = 673)

Vậy \(P_{min}=2019\sqrt{5}\Leftrightarrow a=b=c=673\)

20 tháng 5 2021

Các bạn chuyển \(1c^2\) thành \(2c^2\) cho mk nha

25 tháng 10 2019

Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D

30 tháng 6 2020

Mấy bạn ơi , cho tớ hỏi:

Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?

Ai trả lời nhanh mình tích cho.
 

7 tháng 7 2015

Áp dụng Côsi: 

\(2.\frac{4}{3}.\sqrt{2a+bc}\le\left(\frac{4}{3}\right)^2+2a+bc\)

Tương tự: \(2.\frac{4}{3}\sqrt{2b+ca}\le\frac{16}{9}+2b+ca;2.\frac{4}{3}\sqrt{2c+ab}\le\frac{16}{9}+2c+ab\)

\(\Rightarrow\frac{8}{3}Q\le\frac{16}{3}+2\left(a+b+c\right)+bc+ca+ab=\frac{28}{3}+ab+bc+ca\)

Ta có: \(3\left(ab+bc+ca\right)=2\left(ab+bc+ca\right)+ab+bc+ca\)

\(\le2\left(ab+bc+ca\right)+a^2+b^2+c^2=\left(a+b+c\right)^2=4\)

\(\Rightarrow ab+bc+ca\le\frac{4}{3}\)

\(\Rightarrow\frac{8}{3}Q\le\frac{28}{3}+\frac{4}{3}=\frac{32}{3}\Rightarrow Q\le4\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)

15 tháng 1 2020

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(a^2+2c^2\right)\left(1+2\right)\ge\left(a+2c^2\right)\)

\(\Rightarrow\sqrt{a^2+2c^2}\ge\frac{a+2c}{3}\)

\(\Rightarrow\frac{\sqrt{a^2+2c^2}}{ac}\ge\frac{a+2c}{\sqrt{3ac}}=\frac{ab+2bc}{\sqrt{3abc}}\)

\(\Rightarrow\hept{\begin{cases}\frac{\sqrt{c^2+2b^2}}{bc}\ge\frac{ac+2ab}{\sqrt{3abc}}\\\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{bc+2ac}{\sqrt{abc}}\end{cases}}\)

Ta được BĐT:

\(VT\ge\frac{1}{3}.\frac{ab+2abc+ac+2ab+bc+2ac}{abc}=\frac{1}{3}.\frac{3\left(ab+bc+ac\right)}{abc}\)

\(=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=3\)

=> đpcm

P/S: Làm tắt vs đoạn này k^o chắc mấy :V

15 tháng 1 2020

Repair đề \(\Sigma_{cyc}\frac{\sqrt{2a^2+b^2}}{ab}\ge3\sqrt{3}\).Because dấu '=' xảy ra khi \(a=b=c=3\)

Không use condition của đề bài :))

Ta co:

\(VT=\sqrt{\frac{a}{b}+\frac{a}{b}+\frac{b}{a}}+\sqrt{\frac{b}{c}+\frac{b}{c}+\frac{c}{b}}+\sqrt{\frac{c}{a}+\frac{c}{a}+\frac{a}{c}}\)

\(\Rightarrow VT\ge\sqrt{3\sqrt[3]{\frac{a}{b}}}+\sqrt{3\sqrt[3]{\frac{b}{c}}}+\sqrt{3\sqrt[3]{\frac{c}{a}}}\ge3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{a}{b}}.\sqrt{3\sqrt[3]{\frac{b}{c}}.\sqrt{3\sqrt[3]{\frac{c}{a}}}}}}=3\sqrt{3}\)

equelity iff \(a=b=c=3\)