K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

Ta có \(\sqrt{1+a^2}+\sqrt{2a}\le\sqrt{2\left(1+a^2+2a\right)}=\sqrt{2}\left(a+1\right)\).

Tương tự \(\sqrt{1+b^2}+\sqrt{2b}\le\sqrt{2}\left(b+1\right)\)\(\sqrt{1+c^2}+\sqrt{2c}\le\sqrt{2}\left(c+1\right)\).

Lại có \(\left(2-\sqrt{2}\right)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(a+b+c\right)}\le3\left(2-\sqrt{2}\right)\).

Do đó \(B\le\sqrt{2}\left(a+b+c+3\right)+3\left(2-\sqrt{2}\right)\le6\sqrt{2}+6-3\sqrt{2}=3\sqrt{2}+6\).

Dấu "=" xảy ra khi a = b = c = 1.

NV
13 tháng 8 2021

\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

Tương tự, ta có:

\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

26 tháng 8 2020

Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2

Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)

\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)

Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)

Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)

\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)

Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)

Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có 

\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)

Lập bảng biến thiên ta có min[2;\(+\infty\)\(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)

Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2

26 tháng 8 2020

Đặt a=xc; b=cy (x;y >=1)

  • Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
  • Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
  • Xét x,y>1 thay vào giả thiết ta có

\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)

\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)

Biểu thức P được viết lại như sau

\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)

\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)

Đặt t=xy với t>=4

Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)

Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)

Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)

Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c

28 tháng 5 2022

Ta có : \(b=\dfrac{c+a}{2}\Rightarrow2b=c+a\Rightarrow a-b=b-c\)

Dó đó : \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}-\sqrt{c}\right)}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{a-b}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{b-c}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\) Vì  \(\left(a-b=b-c\right)\)

 

\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}+\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{\sqrt{a}-\sqrt{c}}{b-c}\left(\sqrt{a}+\sqrt{c}\right)\)

\(P=\dfrac{a-c}{a-b}=\dfrac{a-c}{a-\dfrac{a+c}{2}}=\dfrac{a-c}{\dfrac{2a-a-c}{2}}=\dfrac{a-c}{\dfrac{a-c}{2}}=2\)

17 tháng 7 2018

Ta có: \(\left(\sqrt{a}+\sqrt{c}\right)^2=a+2\sqrt{ac}+c=2b+2\sqrt{ac}\)(1)

Lại có: \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2\sqrt{b}+\sqrt{a}+\sqrt{c}}{b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\)

\(=\frac{\left(2\sqrt{b}+\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(Nhân cả tử & mẫu với \(\sqrt{a}+\sqrt{c}\))

\(=\frac{2\sqrt{ab}+2\sqrt{bc}+\left(\sqrt{a}+\sqrt{c}\right)^2}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(2)

Thế (1) và (2) => \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}\)\(=\frac{2\sqrt{ab}+2\sqrt{bc}+2b+\sqrt{ca}}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)

\(=\frac{2}{\sqrt{a}+\sqrt{c}}.\)

\(\Rightarrow\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)(đpcm).

12 tháng 9 2018

kurokawa neko sau khi thay 1 vào 2 là 2\(\sqrt{ac}\)nha

NV
1 tháng 2 2022

\(P=1\sqrt{a-1}+1\sqrt{b-2}+1\sqrt{c-3}\le\dfrac{1}{2}\left(1+a-1+1+b-2+1+c-3\right)=3\)

\(P_{max}=3\) khi \(\left(a;b;c\right)=\left(2;3;4\right)\)

\(P^2=a+b+c-6+2\left(\sqrt{\left(a-1\right)\left(b-2\right)}+\sqrt{\left(a-1\right)\left(c-3\right)}+\sqrt{\left(b-2\right)\left(c-3\right)}\right)\)

\(P^2\ge a+b+c-6=3\)

\(P\ge\sqrt{3}\)

\(P_{min}=\sqrt{3}\) khi \(\left(a;b;c\right)=\left(1;2;6\right);\left(1;5;3\right);\left(4;2;3\right)\)

1 tháng 2 2022

thầy giải thích thêm phần dấu bằng xảy ra của phần tìm giá trị nhỏ nhất được không ạ