Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)
Cộng vế theo vế ta được :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) ( đpcm )
2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :
\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)
Dấu "=" xảy ra <=> b - 1 = 1 <=> b = 2
\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)
Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2
Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)
Dấu "=" xảy ra <=> a = b = 2
Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0
Ta có : \(\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}}\)
\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{y})^2-2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})\)
\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-2\frac{x+y+z}{xyz}\)
\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2(đpcm)\)
Chúc bạn học tốt
Câu trả lời cảu em là:
Từ một cách làm nào đó mà đúng suy ra ĐPCM
(Hi hi, **** cho em nha)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\frac{ab+bc+ca}{abc}=0\)
\(ab+bc+ca=0\Leftrightarrow\hept{\begin{cases}ab=-bc-ca\\bc=-ab-ca\end{cases},,,ca=-ab-bc}\)
\(\frac{a^2}{a^2+bc-ab-ca}=\frac{a^2}{a\left(a-b\right)-c\left(a-b\right)}=\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)
tương tự
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(P=\frac{a^2\left(b-c\right)+b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)}\)
có \(a^2\left(b-c\right)+b^2\left(a-c\right)+c^2\left(a-b\right)=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
\(P=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(c-a\right)\left(c-b\right)}=1\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Một liên đội có khoảng 200 đến 300 đội viên.Mỗi lần xếp hàng 3,hàng 5 ,hàng 7 thì vừa đủ. Tính số đội viên